

iPAC-8000 User Manual

(C Language Based)

Version 1.0.1, June 2010

Service and usage information for

iP-8411

iP-8811

iP-8441/iP-8441-FD

iP-8841/iP-8841-FD

Warranty

All products manufactured by ICP DAS are under warranty regarding

defective materials for a period of one year, beginning from the date

of delivery to the original purchaser.

Warning

ICP DAS assumes no liability for any damage resulting from the use of

this product.ICP DAS reserves the right to change this manual at any

time without notice. The information furnished by ICP DAS is believed

to be accurate and reliable. However, no responsibility is assumed by

ICP DAS for its use, not for any infringements of patents or other

rights of third parties resulting from its use.

Copyright

Copyright @ 2009 by ICP DAS Co., Ltd. All rights are reserved.

Trademark

The names used for identification only may be registered trademarks

of their respective companies.

Contact US

If you have any question, please feel free to contact us.

We will give you a quick response within 2 workdays.

 Email: service@icpdas.com

mailto:service@icpdas.com

Table of Contents

1. Introduction -- 6

1.1. Features -- 7

1.2. Specification --- 12

1.3. Overview --- 14

1.4. Dimension -- 15

1.4.1. 4 Slots -- 15

1.4.2. 8 Slots -- 16

1.5. Companion CD --- 18

2. Getting Started --- 19

2.1. Hardware Installation -- 20

2.2. Software Installation --- 24

2.3. Boot Configuration --- 26

2.4. Uploading iPAC-8000 Programs --- 27

2.4.1. Establishing a connection between PC and iPAC-8000 ---------------------- 28

2.4.1.1. COM1 Connection -- 29

2.4.1.2. USB Connection --- 32

2.4.1.3. Ethernet Connection -- 35

2.4.2. Uploading and executing iPAC-8000 programs --------------------------------- 40

2.4.3. Making programs start automatically -- 41

2.5. Updating iPAC-8000 OS image --- 43

3. “Hello World” - Your First Program -------------------------------- 46

3.1. C Compiler Installation -- 47

3.1.1. Installing the C compiler -- 48

3.1.2. Setting up the environment variables -- 52

3.2. iPAC-8000 APIs --- 55

3.3. First Program in iPAC-8000 --- 58

4. APIs and Demo References -- 69

4.1. API for COM Port --- 74

4.1.1. Types of COM port functions -- 75

4.1.2. API for MiniOS7 COM port --- 76

4.1.3. API for standard COM port --- 79

4.1.4. Port functions Comparison --- 82

4.1.5. Request/Response protocol define on COM port ------------------------------ 84

4.2. API for I/O Modules -- 85

4.3. API for EEPROM --- 87

4.4. API for Flash Memory --- 89

4.5. API for NVRAM --- 91

4.6. API for 5-Digital LED -- 93

4.7. API for Timer -- 95

4.8. API for WatchDog Timer (WDT) -- 97

4.9. API for microSD -- 101

Appendix A. What is MiniOS7? -------------------------------------- 101

Appendix B. What is MiniOS7 Utility? ----------------------------- 107

Appendix C. What is MiniOS7 File System (MFS)? ----------- 108

Appendix D. More C Compiler Settings ---------------------------- 111

D.1. Turbo C 2.01 -- 112

D.2. BC++ 3.1. IDE -- 115

D.3. MSC 6.00 -- 119

D.4. MSVC 1.50 -- 121

1. Introduction

iPAC-8000 is a compact size PAC (Programmable Automation Controller). It equips

an 80186 CPU (16bits and 80MHz) running a MiniOS7 operating system, several

communication interface (Ethernet, RS-232/485) and 4/8 slots to expand I/O

modules.

The operating system, MiniOS7, can boot up in a very short time (0.4~0.8 seconds). It

has a built-in hardware diagnostic function, and supports the full range of functions

required to access all high profile I-8K and I-87K series I/O modules, such as DI, DO,

DIO, AI, AO, Counter/Frequency, motion control modules, etc. And to simplify the

TCP/IP software developing process, a software development template, X-Server, is

provided. It implements 90% functionalities of Ethernet communication. Software

engineer can easily finish the 10% remaining functionality and greatly shorten the

developing time.

The iPAC-8000 is designed for applications to industrial monitoring, measurement

and controlling; therefore, we made it with redundant power inputs with 1KV isolation

from noise and surges, and a wide range of operating temperature (-25°C~+75°C). It

is tough enough to service in harsh and rough environments.

 Features 1.1.

 Software Features

MiniOS7 embedded operating system

MiniOS7 was introduced in 1996 as an MS-DOS like operating system for

embedded controller developers. The features of MiniOS7 include

A. Small kernel size (64KB)

B. Fast boot speed (0.4~0.8 second)

C. Hardware diagnostic functions

D. Simple command line operation over RS-232 or Ethernet

E. Load files via RS-232 or Ethernet

VxComm Technique Supported

VxComm technique is used to create virtual COM ports on PC (for windows

2K/XP) to map remote COM ports of PDS-700, I-7188E, I-8000 and iPAC-8000

over the Ethernet. Using the technique, RS-232/485 software can access

devices locally (via the physical RS-232/485 bus) or remotely (via the Ethernet).

The RS-232/485 software only needs to change COM port number from the

physical COM port to virtual COM port.

Redundant Ethernet Communication (for iP-8441 and iP-8841 modules only)

With the dual LAN features of iPAC-8000, user's software on PCs or other

controllers can implement redundant Ethernet communication. With VxComm

technique, the redundant Ethernet communication is ready. One virtual COM

port on PC can map to one COM port of iPAC-8000 via two IP address. When

the communication is failed (or timeout), the VxComm driver can automatically

and quickly switch the virtual COM port mapping to another IP address to keep

the communication.

Easy-Use Software Development Template (Xserver) for TCP/IP Application

To simplify the TCP/IP software developing process, we designed a software

develop template, called XServer. It is a reliable, opened, expandable, all

purposed, and easily to be used library. The Xserver implements 90%

functionalities of Ethernet communication. Refer the rich demo programs we

provided, software engineer can easily finish the 10% remaining funtionalities

and greatly shorten the developing time.

Slave I/O firmware options (for DCON or Modbus/TCP protocol)

In some simple Ethernet I/O applications, users just want to know how to send

a command to the I/O to get back a response. They don‟t want to develop a

firmware. That is too difficult to them. Thus, we also provide two firmware for

this purpose.

A. DCON firmware

DCON firmware supports an ASCII string based command set, called DCON

protocol

B. Modbus firmware

Modbus firmware supports the standard Modbus/TCP protocol. SCADA

software can easily access the I/O module plugged in the iPAC-8000.

 Hardware Features

80186 CPU (16bit and 80MHz) with 512KB Flash and 768KB SRAM

The 512KB flash is for storing files, and the 768KB SRAM is for running

programs.

 64-bit Hardware Serial Number

The 64-bit hardware serial number is unique and individual. Every serial

number of iPAC-8000 is different. Users can add a checking mechanism to

their AP to prevent software from pirating.

Dual Battery Backup SRAM (512KB)

To maintain important data while power off, non-volatile memory is the ideal

design. The iPAC-8000 equips a 512KB SRAM with two Li-batteries to maintain

data while power off. The two Li-batteries can continually supply power to the

512KB SRAM to retain the data for 5 years; and the dual-battery design can

avoid data lost while replacing a new battery.

I/O Module Hot Swap Ability

The iPAC-8000 features hot swap which means that there is no need to power

off the iPAC-8000 for replacing modules. And the OS provides a function

sending plug-in and removing messages to user‟s applications. Using this

feature, users can design its own plug-and-play applications.

Rich I/O Expansion Ability (RS-232/485, Ethernet, FRnet, CAN)

Beside the local I/O slots, iPAC-8000 also equips several RS-232/485 ports,

two Ethernet ports to connect serial I/O and Ethernet I/O. And with FRnet and

CAN communication module in local slot, FRnet I/O and CAN devices are easy

to be integrated.

Dual Ethernet Ports (for iP-8441 and iP-8841 modules only)

iPAC-8000 provides two Ethernet ports. The two Ethernet ports can be used to

implement redundant Ethernet communication and separate Ethernet

communication (one for global Internet, one for private Ethernet).

Redundant Power Inputs

To prevent theiPAC-8000 from failing by the power loss, the power module is

designed with two inputs. The iPAC-8000 can keep working even one power

input fails, and mean while there is a relay output for informing the power

failure.

Ventilated Housing Design Allows Operation Between -25 ~ +75 ℃

Each iPAC-8000 is housed in a plastic-based box with a column-like ventilator

that can help to cool the working environment inside the box and allow the

iPAC-8000 operating between -25 °C and +75 °C.

 Specification 1.2.

Models iP-8411 iP-8441 iP-8441-FD iP-8811 iP-8841 iP-8841-FD

System Software

OS MiniOS7 (DOS-like embedded operating system)

Program Download Interface
RS-232

(COM1)

RS-232 (COM1) or Ethernet
RS-232

(COM1)

RS-232 (COM1) or Ethernet

Programming Language C Language

Compilers to create.exe files

TC++ 1.01 (Freeware)

TC 2.01 (Freeware)

BC++ 3.1 ~ 5.2x

MSC 6.0

MSVC++ (before version 1.5.2)

CPU Module

CPU 80186 or compatible (16-bit and 80 MHz)

SRAM 512 KB 768 KB 512 KB 768 KB

Flash 512 KB (100,000 erase/write cycles) with Flash protection switch

Expansion Flash Memory microSD socket (can support 1/2 GB microSD)

64 MB NAND Flash Disk - Yes - Yes

Dual Battery Backup SRAM 512 KB (for 5 years data retention)

EEPROM 16 KB; data retention: 40 years; 1,000,000 erase/write cycles

NVRAM 31 bytes (battery backup, data valid up to 5 years)

RTC (Real Time Clock) Provide second, minute, hour, date, day of week, month, year)

64-bit Hardware Serial

Number
Yes

Watchdog Timers Yes (0.8 second)

NET ID 8-pin DIP switch to assign NET ID as 1 ~ 255

Communication Ports

Ethernet -

RJ-45 x 2, 10/100

Base-TX

(Auto negotiating, auto

MDI/MDI-X, LED

indicators)

-

RJ-45 x 2, 10/100

Base-TX

(Auto negotiating, auto

MDI/MDI-X, LED

indicators)

COM0 Internal communication with the high profile I-87K series modules in slots

COM1 RS-232 (to update firmware) (RxD, TxD and GND); non-isolated

COM2 RS-485 D2+, D2-; self-tuner ASIC inside

Isolation 3000 VDC

COM3
RS-232/RS-485 (RxD, TxD, CTS, RTS and GND for RS-232, Data+ and

Data- for RS-485); non-isolated

COM4 RS-232 (RxD, TxD, CTS, RTS, DSR, DTR, CD, RI and GND); non-isolated

SMMI

5-Digital LED Display Yes

3-Programmable LED

Indicators
Yes

4-Push Yes

Buzzer - Yes - Yes

I/O Expansion Slots

Slot Number
4 8

(For high profile I-8K and I-87K modules only)

Hot Swap * Will be available For high profile I-87K modules only

Data Bus 8/16 bits

Address Bus Range 2 K for each slot

Mechanical

Dimensions (W x L x H) 231 mm x 132 mm x 111 mm 355 mm x 132 mm x 111 mm

Installation DIN-Rail or Wall Mounting

Operating Environment

Operating Temperature -25 ~ +75〬C

Storage Temperature -30 ~ +80〬C

Humidity 10 ~ 90 % RH (non-condensing)

Power

Input Range +10 ~ +30 VDC

Isolation 1 kV

Redundant Power Inputs Yes, with one power relay (1 A @ 24 VDC) for alarm

Capacity

0.85 A, 5 V supply to CPU and

backplane, 5.51 A, 5 V supply to

I/O expansion slots, 30 W in total

0.9 A, 5 V supply to CPU and

backplane, 5.1 A, 5 V supply to I/O

expansion slots, 30 W in total

Consumption 6.7 W (0.28 A @ 24 VDC)

 Overview 1.3.

Here is a brief overview of the components and its descriptions for module status.

 Dimension 1.4.

There are several series of iPAC-8000 modules whose dimensions depended on the

quantity of the slot.

 4 Slots 1.4.1.

 Top View

 Front View

 Side View

 8 Slots 1.4.2.

 Top View

 Front View

 Side View

 Companion CD 1.5.

This package comes with a CD that provides drivers, software utility, all of the

required documentations…, etc. All of them are listed below.

CD:\NAPDOS

iPAC8000

Demo

Document

Firmware

html

OS_Image

PC_Tool

USB_Driver

c_language_guide_chinese.html

c_language_guide_eng.html

2. Getting Started

If you are a new user, begin with this chapter, it includes a guided tour that provides a

basic overview of installing, configuring and using the iPAC-8000.

Before beginning any installation, please check the package contents. If any items

are damaged or missing, please contact us.

In addition to Quick Start Guide, the package includes the following items:

 iPAC-8000 Software Utility CD RS-232 Cable Screw Driver

 (IP-8xxx) (CA-0915) (1C016)

 Hardware Installation 2.1.

Before installing the hardware, you should have a basic understanding of hardware

specification, such as the size of hard drive, the usable input-voltage range of the

power supply, and the type of communication interfaces.

For complete hardware details, please refer to section “1.2. Specifications”

You also need to know the expansion capacities in order to choose the best

expansion module for achieving maximal efficiency.

For more information about expansion module that are compatible with the

iPAC-8000, please refer to

http://www.icpdas.com/products/PAC/I-8000/8000_IO_modules.htm

Below are step-by-step instructions for deploying the basic iPAC-8000 system.

Step 1: Mount the hardware

The iPAC-8000 can be mounted with the bottom of the chassis on the DIN rail.

http://www.icpdas.com/products/PAC/I-8000/8000_IO_modules.htm

The iPAC-8000 installation must provide proper ventilation, spacing, and grounding to

ensure the equipment will operate as specified. A minimum clearance of 50mm

between the iPAC-8000 and the top and bottom side of the enclosure panels must be

provided.

Step 2: Connect the iPAC-8000 to PC and setting up the power supply

The iPAC-8000 equips an RJ-45 Ethernet port for connection to an Ethernet

hub/switch and PC, and powered by a standard 12 VDC power supply.

If the PC/Laptop is not fitted with a COM port, you can use the I-7560 (USB to RS-232

converter) for connection between iPAC-8000 and PC/Laptop.

The I-7560 driver need be installed before starting to use it. You can obtain the driver

from enclosed CD:

CD:\Napdos\7000\756x or FTP site:

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/7000/756x/

After installing the USB driver, please check the “Device Manager” to make sure the

driver has been installed and the COM port number which is assigned to the I-7560.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/7000/756x/

Step 3: Insert I/O modules

There are various types of I/O expansion modules for interfacing many different field

devices to the iPAC-8000 system.

For more information about I/O expansion module, please refer to

http://www.icpdas.com/products/PAC/xpac/remote_io_support_list.htm

These modules have their own manuals, so if you are using them you should

supplement this manual with the manual specifically designed for the special module.

http://www.icpdas.com/products/PAC/xpac/remote_io_support_list.htm

 Software Installation 2.2.

The Companion CD includes complete sets of APIs, demo programs and other tools

for developing your own applications.

Below are step-by-step instructions for installing the iPAC-8000 APIs, demo programs

and tools.

Step 1: Copy the “Demo” folder from the companion CD to PC

The folder is an essential resource for users developing your own applications which

contains libraries, header files, demo programs and more information as shown

below.

CD: \Napdos

iPAC8000

Demo

Basic

7K87K_for_COM

COM_Ports

.

.

.

Timer

Framework

Xserver

Readme.txt

Step 2: Installing the MiniOS7 Utility

MiniOS7 Utility is a suite of tool for managing MiniOS7 devices (μPAC-5000,

iPAC-8000, μPAC-7186,. etc.). It‟s comprised of four components – System monitor,

communication manager, file manager and OS loader.

The MiniOS7 Utility can be obtained from companion CD or our FTP site:

CD:\Napdos\minios7\utility\minios7_utility\

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_utility/

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_utility/

 Boot Configuration 2.3.

Before you upload some programs to iPAC-8000, you need to enter the Init mode to

stop the program running.

Make sure the switch of the Lock placed in the “Init” position.

 Uploading iPAC-8000 Programs 2.4.

MiniOS7 Utility is a suite of tool for managing MiniOS7 devices (μPAC-5000,

iPAC-8000, μPAC-7186,. etc.). It‟s comprised of four components – System monitor,

communication manager, file manager and OS loader.

Before you begin using the MiniOS7 Utility to upload programs, ensure that

iPAC-8000 is connected to PC.

The upload process has the following main steps:

1. Establishing a connection between PC and iPAC-8000

2. Uploading and executing programs on iPAC-8000

3. Making programs start automatically

All of these main steps will be described in detail later.

 Establishing a connection between PC and iPAC-8000 2.4.1.

Connect the Host PC to the iPAC-8000 with the following connection types:

1. RS-232 connection

2. USB connection

3. Ethernet connection

(for iP-8441 and iP-8841 modules only)

Each of the connection types will be described in detail later.

RS-232 and USB

Ethernet

2.4.1.1. COM1 Connection

Below are step-by-step instructions on how to connect to PC using a RS-232

connection.

Step 1: Turn the switch to “Init” position

Step 2: Use the RS-232 Cable (CA-0915) to connect to PC

RS-232

Step 3: Run the MiniOS7 Utility

Step 4: Click the “New connection” function from the “Connection” menu

Step 5: On the “Connection” tab of the “Connection” dialog box, select

“COM1” from the drop down list, and then click “OK”

Step 6: The connection has already established

Connection Status

2.4.1.2. USB Connection

If the PC/Laptop is not fitted with a COM port, you can use the I-7560 (USB to RS-232

converter) for connection between iPAC-8000 and PC/Laptop.

Below are step-by-step instructions on how to connect to PC using a USB connection.

Step 1: Turn the switch to “Init” position

Step 2: Use the I-7560 to connect the iPAC-8000 and PC

Before using the USB connection, ensure the

I-7560 driver that you have installed. If they are

not installed, please refer to “section 2.1.

Hardware Installation”.

USB

I-7560

Step 3: Run the MiniOS7 Utility

Step 4: Click the “New connection” function from the “Connection” menu

Step 5: On the “Connection” tab of the “Connection” dialog box, select

“COM3” from the drop down list, and then click “OK”

Step 6: The connection has already established

Connection Status

2.4.1.3. Ethernet Connection (for iP-8441 and iP-8841 modules only)

Below are step-by-step instructions on how to connect to PC using an Ethernet

connection.

Step 1: Turn the switch to “Init” position

Step 2: Use the Ethernet Cable to connect to PC

Etherne

t

Step 3: Run the MiniOS7 Utility

Step 4: Click the “Search” function from the “Connection” menu

Step 5: On the “MiniOS7 Scan” dialog box, choose the module name from

the list and then choose “IP setting” from the toolbar

Step 6: On the “IP Setting” dialog, configure the “IP” settings and then

click the “Set” button

Step 7: On the “Confirm” dialog box, click “Yes”

Step 8: Click the “New connection” function from the “Connection” menu

Step 9: On the “Connection” tab of the “Connection” dialog box, select

“UDP” from the drop down list, type the IP address which you are

assigned, and then click “OK”

Step 10: The connection has already established

Connection Status

 Uploading and executing iPAC-8000 programs 2.4.2.

Before uploading and executing iPAC-8000 programs, you must firstly establish a

connection between PC and iPAC-8000, for more detailed information about this

process, please refer to section “2.4.1. Establishing a connection”

Step 1: On PC side, right click the file name that you wish to upload and

then select the “Upload”

Step 2: On the module side, right click the file name that you wish to

execute and then select the “Run”

PC side module side

 Making programs start automatically 2.4.3.

After upload programs on the iPAC-8000, if you need programs to start automatically

after the iPAC-8000 start-up, it is easy to achieve it, to create a batch file called

autoexec.bat and then upload it to the iPAC-8000, the program will start automatically

in the next start-up.

For example, to make the program “hello” run on start-up.

Step 1: Create an autoexec.bat file

i. Open the “Notepad”

ii. Type the command

The command can be either the file name “HELLO.exe” (run the specified file) or

“runexe” (run the last exe file)

iii. Save the file as autoexec.bat

The file name:

Run the specified file.

Runexe:

Run the last exe file.

Step 2: Upload programs to iPAC-8000 using MiniOS7 Utility

For more detailed information about this process, please refer to section “2.4.1.

Establishing a connection”

Tips & Warnings

Before restaring the module for

settings to take effect, you must firstly

turn the switch to “Init” position.

One is the “Hello”

application file, and the

other is the

“autoexec.bat” batch file

C837_2M_UDP_20090903.img

 CPU Type

 Number of MAC

 Protocol Type

 Release Date

 Updating iPAC-8000 OS image 2.5.

ICP DAS will continue to add additional features to iPAC-8000 in the future, we advise

you periodically check the ICP DAS web site for the latest update to iPAC-8000.

Step 1: Get the latest version of the iPAC-8000 OS image

The latest version of the iPAC-8000 OS image can be obtained from:

CD:\NAPDOS\iPAC8000\OS_Image

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/ipac8000/os_image/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/ipac8000/os_image/

Step 2: Establish a connection

For more detailed information about this process, please refer to section “2.4.1.

Establishing a connection”

Step 3: Click the “Update MiniOS7 Image …” from the “File” menu

Step 4: Select the latest version of the MiniOS7 OS image

Step 5: Click the “OK”

Step 6: Click the “Info” from the “Command” menu to check the version of

the OS image

3. “Hello World” - Your First Program

When you learn every computer programming language you may realize that the first

program to demonstrate is "Hello World", it provides a cursory introduction to the

language's syntax and output.

Below are step-by-step instructions on how to write your first iPAC-8000 program.

 C Compiler Installation 3.1.

C is prized for its efficiency, and is the most popular programming language for writing

applications.

Before writing your first iPAC-8000 program, ensure that you have the necessary

C/C++ compiler and the corresponding functions library on your system.

The following is a list of the C compilers that are commonly used in the application

development services.

 Turbo C++ Version 1.01

 Turbo C Version 2.01

 Borland C++ Versions 3.1 - 5.2.x

 MSC

 MSVC ++

We recommend that you use Borland C++ compiler as the libraries have been

created on the companion CD.

Before compiling an application, you need to take care of the

following matters.

 Installing the C compiler 3.1.1.

If there is no compiler currently installed on your system, installation of the compiler

should be the first step.

Below are step-by-step instructions for guiding you to install Turbo C++ Version 1.01

on your system.

Step 1: Double click the Turbo C++ executable file to start setup wizard

Step 2: Press “Enter” to continue

Step 3: Enter the letter of the hard drive you wish to install the software

Step 4: Enter the path to the directory you wish to install files to

Step 5: Select “Start Installation” to begin the install process

Step 6: Press any key to continue

Step 7: Press any key to continue

Step 8: Installation is complete

 Setting up the environment variables 3.1.2.

After installing the compiler, several compilers will be available from the Windows

Command line. You can set the path environment variable so that you can execute

this compiler on the command line by entering simple names, rather than by using

their full path names.

Step 1: Right click on the “My Computer” icon on your desktop and select

the “Properties” menu option

Right-click “My

Computer” and then

select “Properties”

Step 2: On the “System Properties” dialog box, click the “Environment

Variables” button located under the “Advanced” sheet

Step 3: On the “Environment Variables” dialog box, click the “Edit” button

located in the “System variables” option

1

2

3

4

Step 4: Add the target directory to the end of the variable value field

A semi-colon is used as the separator between variable values.

For example, ”;c:\TC\BIN\;c:\TC\INCLUDE\”

Step 5: Restart the computer to allow your changes to take effect

 iPAC-8000 APIs 3.2.

There are several APIs for customizing the standard features and integrating with

other applications, devices and services.

Before creating the application, ensure them that you have installed. If they are not

installed, please refer to “section 2.2. Software Installation”.

The following introduces the core API, MiniOS7 API, which is integrated into the

iPAC-8000 API set.

Functions Library ─ 8000a.lib

This file contains the MiniOS7 API (Application Programming Interface) and has

hundreds of pre-defined functions related to iPAC-8000

Header File ─ 8000a.h

This file contains the forward declarations of subroutines, variables, and other

identifiers used for the MiniOS7 API.

MiniOS7

API

Functions

COM Ports

EEPROM

Flash

Memory

NVRAM

and

RTC

SRAM

5-Digit

LED

Timer

and

WatchDogT
imer

Files

Progra-
mmable IO

Standard IO

Others

(MISC)

For full usage information regarding the description, prototype and the arguments of

the functions, please refer to the “MiniOS7 API Functions User Manual” located at:

CD:\Napdos\MiniOS7\Document

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/minios7/document/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/document/

 First Program in iPAC-8000 3.3.

Here we assume you have installed the Turbo C++ 1.01 (as the section “3.1. C

Compiler Installation”) and the iPAC-8000 APIs (as the section “2.2. Software

Installation”) under the C driver root folder.

Below are step-by-step instructions for writing your first program.

Step 1: Open a MS-DOS command prompt

i. Select “Run” from the “Start” menu

ii. On the “Run” dialog box, type “cmd”

iii. Click the “OK” button

1

2. Type “cmd”

3

Step 2: At the command prompt, type “TC” and then press “Enter”

Step 3: Select “New” from the “File” menu to create a new source file

Step 4: Type the following code. Note that the code is case-sensitive

#include “..\..\Demo\basic\Lib\8000a.h”

/* Include the header file that allows 8000a.lib functions to be used */

void main(void)

{

 InitLib(); /* Initiate the 8000a library */

 Print(“Hello 8000!\r\n”); /* Print the message on the screen */

}

Step 5: Save the source file

i. Select “Save” from the “File” menu

ii. Type the file name “Hello”

iii. Select “OK”

You can write the code as shown below with your familiar text

editor or other tools; please note that

you must save the source code under a filename that terminates

with the extension “C”.

Step 6: Create a project (*.prj)

i. Select “Open project…” from the “Project” menu

ii. Type the project name “Hello”

iii. Select “OK”

iv. Select “Add”

v. Select “Done” to exit

Step 8: Add the necessary function libraries to the project (*.lib)

i. Select “Add item…” from the “Project” menu

ii. Type “ *.LIB ” to display a list of all available function libraries

iii. Choose the function libraries you require

iv. Select “Add”

v. Select “Done” to exit

Step 9: Set the memory model to large

i. Select “Compiler” from the “Options” menu and then select “Code generation…”

ii. On “Model” option, select “Large”

iii. Select “OK”

Step 10: Set the memory model to large

i. Select “Compiler” from the “Options” menu and then select “Advanced code

generation…”

ii. On “Floating Point” option, select “Emulation”

iii. On “Instruction Set” option, select “80186”

iv. Select “OK”

Step 11: Set the memory model to large

i. Select “Directories…” from the “Options” menu

ii. On “Include Directories” option, specify the header file

iii. On “Library Directories” option, specify the function library file

iv. Select “OK”

Step 12: Select “Build all” from the “Compile” menu to build the project

Step 13: Configure the operating mode

Make sure the switch of the Lock placed in the “OFF” position, and the switch of the

Init placed in the “ON” position.

Step 14: Create an autoexec.bat file

i. Open the “Notepad”

ii. Type the “HELLO.exe”

iii. Save the file as autoexec.bat

Step 15: Upload programs to iPAC-8000 using MiniOS7 Utility

For more detailed information about this process, please refer to section “2.4.1.

Establishing a connection”

One is the “Hello”

application file, and the

other is the

“autoexec.bat” batch

file

4. APIs and Demo References

There are several APIs and demo programs that have been designed for iPAC-8000.

You can examine the APIs and demo source code, which includes numerous

functions and comments, to familiarize yourself with the MiniOS7 APIs and quickly

develop your own applications quickly by modifying these demo programs.

The following table lists the APIs grouped by functional category.

API Description Header File Library

CPU driver 8000a.h 8000a.lib

DCON driver DCON_FUN.h DCON_8KL.LIB

Ethernet driver Tcpip32.h tcp2dm32.lib

Framework driver MFW.h MFW09313.LIB

microSD driver microSD.h SD_V100.LIB

Xserver driver VXCOMM.H V8a_3230.lib

The following introduces the core API, MiniOS7 API, which is integrated into the iPAC-8000

API set.

Functions Library ─ 8000a.lib

This file contains the MiniOS7 API (Application Programming Interface) and has hundreds of

pre-defined functions related to iPAC-8000

Header File ─ 8000a.h

This file contains the forward declarations of subroutines, variables, and other identifiers

used for the MiniOS7 API.

MiniOS7

API

Functions

COM Ports

EEPROM

Flash

Memory

NVRAM

and

RTC

SRAM

5-Digit

LED

Timer

and

WatchDogT
imer

Files

Progra-
mmable IO

Standard IO

Others

(MISC)

For full usage information regarding the description, prototype and the arguments of the

functions, please refer to the “MiniOS7 API Functions User Manual” located at:

CD:\Napdos\MiniOS7\Document

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/minios7/document/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/document/

The following table lists the demo programs grouped by functional category.

 Basic

Folder Demo Explanation

File
Config_1_Basic Reads information from a text file (basic).

Config_2_Advanced Reads a config file (text file)(advanced).

Hello
Hello_C

Reads the library version and flash memory size.
Hello_C++

Misc

Reset Resets the software.

Runprog Illustrates how to select an item and run it.

Serial
Illustrates how to retrieve 64-bit hardware unique serial

number.

Watchdog
Enables the WDT or bypasses the enable

WatchDog function.

Smmi

SystemKey
Shows how to operate the systemkey function

simply and easily.

Led
Shows how to control the red LED and 7-segment

display.

Memory
Battery_Backup_SR

AM

Shows how to read or write to the 256K/512K byte

battery backup.

DateTime DateTime
Shows how to read and write the date and time

from the RTC.

Com port

C_Style_IO

(1) Shows how to write a function to input data.

(2) Shows how to receive a string.

(3) Shows how to use a C function: sscanf or

just use Scanf()

Receive

Receives data from COM port.

Slv_COM.c is in non-blocked mode

Receive.c is in blocked mode.

Slv_COM
A slave COM Port demo for (request/reply) or

(command/response) applications.

ToCom_In_Out
Illustrates how to Read/Write byte data via

COM Port.

For more information about these demo programs, please refer to:

CD:\ NAPDOS\iPAC8000\ Demo\Basic\

http://ftp.icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/iPAC8000/Demo/Basic/

 I-8k and I-87k I/O series modules for I/O Slot Applications

Folder Demo Explanation

IO_in_Slot

8K_DI
This demo program is used by 8K series DI

modules, such as 8040, 8051., etc.

8073
This demo program is used for 8073 General

Functions.

87K_DI
This demo program is used by 87K series Dl

modules in Com0, such as 87040, 87051, etc.

87024
This demo program is used by the 87024 AO

module.

… more demo programs

 I-7K and I-87k series modules for RS-485 Network Applications

Folder Demo Explanation

7K 87K_for_Com

7K87K_DI_for_Com "COM Port" can be used to connect and

control I-7k or I-87k series modules.

 For iPAC-8000 module and can use,

COM2, COM3.

 For iPAC-8000 module and (CPU 40

and

80M) can use, COM3, COM4.

7K87K_DO_for_Co

m

7K87K_AI_for_Com

AO_22_26_for_Com

AO_024_for_Com

For more information about these demo programs, please refer to:

CD:\ NAPDOS\iPAC8000\ Demo\Basic\7K87K_for_COM

http://ftp.icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/7K87K_for_COM/

COM3

COM2

COM0

http://ftp.icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/7K87K_for_COM/

 API for COM Port 4.1.

The iPAC-8000 provides five built-in COM ports.

COM1

COM4

COM0

COM2

COM3

 Types of COM port functions 4.1.1.

There are two types of functions below for using COM port.

1. MiniOS7 COM port functions

2. (C style) Standard COM port functions

(C style) Standard COM port functions only can be used with the

COM1, if you use the COM1 port, you‟ll have the alternative of

MiniOS7 COM ports functions or (C style) Standard COM port

functions. If you choose the ones, then another cannot be used.

Summarize the results of the comparison between MiniOS7 COM port functions and

(C style) Standard COM port functions:

Types of

Functions

COM

Port
Buffer Functions

MiniOS7

COM port
1, 2, etc. 1 KB 1 KB IsCom() ToCom()

ReadCom

()
printCom()

(C style)

Standard

COM port

1 512 Bytes 256 Bytes Kbhit()
Puts()

Putch()
Getch() Print()

 API for MiniOS7 COM port 4.1.2.

API for using COM ports

1. InstallCom()

Before any COM Port can be used, the driver must be installed by calling

InstallCom().

2. RestoreCom()

If the program calls InstallCom(), the RestoreCom()must be called to restore

the COM Port driver.

API for checking if there is any data in the COM port input buffer

3. IsCom()

Before reading data from COM port, the IsCom() must be called to check

whether there is any data currently in the COM port input buffer.

API for reading data from COM ports

4. ReadCom()

After IsCom() confirms that the input buffer contains data, the ReadCom() must

be called to read the data from the COM port input buffer.

API for sending data to COM ports

5. ToCom()

Before sending data to COM ports, the ToCom() must be called to send data to

COM ports.

For example, reading and receiving data through the COM1.

#include <stdio.h>

#include “8000a.h”

void main(void)

{

int quit=0, data;

InitLib(); /* Initiate the 8000a library */

InstallCom(1, 115200, 8, 0, 1); /* Install the COM1 driver */

while(!quit)

{

if(IsCom(1)) /* Check if there is any data in the COM port input buffer */

{

data=ReadCom(1); /* Read data from COM1 port */

ToCom(1, data); /* Send data via COM1 port */

if(data==‟q‟) quit=1; /* If „q‟ is received, exit the program */

}

}

RestoreCom(1); /* Uninstall the COM1 driver */

}

API for showing data from COM ports

6. printCom()

Functions such as printfCom() in the C library allow data to be output from

COM ports.

For example, showing data from the COM1 port.

#include <stdio.h>

#include “8000a.h”

void main(void)

{

int i;

/* Initiate the 8000a library */

InitLib();

InstallCom(1, 115200, 8, 0, 1); /* Install the COM1 driver */

for (i=0;i<10;i++)

{

printCom(1,”Test %d\n\r”, i);

}

Delay(10); /* Wait for all data are transmitted to COM port */

RestoreCom(1);

}

 API for standard COM port 4.1.3.

The standard COM port is used to upload program from PC to the iPAC-8000.

(C style) Standard COM port functions only can be used with the

COM1 port, the following configurations of the COM1 port are fixed:

Baudrate = 115200 bps, Data format = 8 bits

Parity check = none, Start bit = 1, Stop bit = 1

API for checking if there is any data in the input buffer

1. Kbhit()

Before reading data from standard I/O port, the kbhit() must be called to check

whether there is any data currently in the input buffer.

API for reading data from standard I/O port

2. Getch()

After kbhit() confirms that the input buffer contains data, the Getch() must be

called to read data from the input buffer.

API for sending data to standard I/O port

3. Puts() – For sending a string

Before sending data to standard I/O port, the Puts() must be called to send data

to COM Port..

4. Putch() – For sending one character

Before sending data to standard I/O port, the Putch() must be called to send

data to COM Port.

API for showing data from standard I/O port

5. Print()

Functions such as Print() in the C library allow data to be output from the COM

port.

For example, reading and receiving data through COM1.

#include<stdio.h>

#include “8000a.h”

void main(void)

{

int quit=0, data;

InitLib(); /* Initiate the 8000a library */

while(!quit)

{

if(Kbhit()) /* Check if any data is in the input buffer */

{

data=Getch(); /* Read data from COM1 */

Putch(data); /* Send data to COM1 */

if(data==‟q‟) quit=1; /* If „q‟ is received, exit the program */

}

}

}

For example, showing data through COM1.

#include <stdio.h>

#include “8000a.h”

void main(void)

{

int i;

/* Initiate the 8000a library */

InitLib();

for(i=0;i<10;i++)

{

Print(“Test %d\n\r”,i);

}

}

 Port functions Comparison 4.1.4.

For example, learning to show the ASCII code.

MiniOS7 COM port functions Standard COM port functions

#include<stdio.h>

#include “8000a.h”

void main(void)

{

unsigned char item;

InitLib();

InstallCom(1, 115200, 8, 0, 1);

printCom(1,”Hits any key.\n”);

printCom(1,”Hit the ESC to exit!\n”);

for(;;)

{

if(IsCom(1))

{

item=ReadCom(1);

if(item==‟q‟)

{

return;

}

else

{

printCom(1,”----------\n\r”);

#include<stdio.h>

#include “8000a.h”

void main(void)

{

unsigned char item;

InitLib();

Print("Hits any key.\n");

Print("Hits the ESC to exit !\n");

for(;;)

{

if(kbhit())

{

item=Getch();

if(item==‟q‟)

{

return;

}

else

{

Print(”----------\n\r”);

printCom(1,”char:”);

ToCom(1,item);

printCom(1,"\n\rASCII(%c)\n\r”,item);

printCom(1,“Hex(%02X)\n\r”,item);

}

}

}

Delay(10);

RestoreCom(1);

}

Print(“char:“);

Putch(item);

Print("\n\rASCII(%c)\n\r”,item);

Print(“Hex(%02X)\n\r”,item);

}

}

}

}

 Request/Response protocol define on COM port 4.1.5.

Request/Response communication is very typical protocol architecture. If you want to

design a command set of communication protocol as table below, you can refer to

“slave_com” demo.

Request Response

c1
Debug information: Command1

Command1

c2
Debug information: Command2

Command2

Q Debug information: Quick program

Other command Debug information: Unknown command

For a request/response application,

please refer to “slave_com” demo

Request

Response

 API for I/O Modules 4.2.

The iPAC-8000 equip a RS-485 communication interface, COM2, to access I-7K

series I/O modules for a wide range of RS-485 network application, as shown below.

Steps to communicate with i-7K series I/O modules:

Step 1: Use Installcom() to install the COM port driver.

Step 2: Use SendCmdTo7000(2,…) to send commands

Step 3: Use ReceiveResponseFrom7000_ms() to get the response.

Step 4: Use RestoreCom() to restore the COM port driver

RS-485

For example, to send a command „$01M‟ to I-7K I/O module for getting the module

name.

#include <stdio.h>

#include “8000a.h”

void main(void)

{

unsigned char InBuf0[60];

InitLib(); /* Initiate the 8000a library */

InstallCom(1,115200,8,0,1); /* Install the COM1 driver */

InstallCom(2,115200,8,0,1); /* Install the COM2 driver */

SendCmdTo7000(2,”$01M”,0); /* Send a command to COM2 */

/* Timeout = 50ms, check sum disabled */

ReceiveResponseFrom7000_ms(2,InBuf0,50,0);

printCom(1,”Module Name = %s”, InBuf0);

Delay(10); /* Wait for all data are transmitted to COM port */

RestoreCom(1); /* Uninstall the COM1 driver */

RestoreCom(2); /* Uninstall the COM2 driver */

}

For user

Reserved for

system use

System

OS

 API for EEPROM 4.3.

 The EEPROM contains 64 blocks (block 0 ~ 63), and each block has 256 bytes

(address 0 ~ 255), with a total size of 16,384 bytes (16K) capacity.

 The default mode for EEPROM is write-protected mode.

 The system program and OS are stored in EEPROM that are allocated as shown

below.

API for writing data to the EEPROM

1. EE_WriteEnable()

Before writing data to the EEPROM, the

EE_WriteEnable() must be called to

write-enable the EEPROM.

2. EE_WriteProtect()

After the data has finished being written

to the EEPROM, the EE_WriteProtect()

must be called to in order to write-protect

the EEPROM.

3. EE_MultiWrite()

After using the EE_WriteEnable() to

write-enable EEPROM, the

EE_MultiWrite()must be called to write the

data.

API for reading data from the EEPROM

4. EE_MultiRead()

The EE_WriteEnable() must be called to read data from the EEPROM no

matter what the current mode is.

Block 0 ~ 6

Block 7

Block 8 ~ 31

Block 32 ~ 64

For example, to write data to block1, address 10 of the EEPROM:

#include <stdio.h>

#include “8000a.h”

void main(void)

{

int data=0x55, data2;

InitLib(); /* Initiate the 8000a library */

EE_WriteEnable();

EE_MultiWrite(1,10,1,&data);

EE_WriteProtect();

EE_MultiRead(1,10,1,&data2); /* Now data2=data=0x55 */

}

 API for Flash Memory 4.4.

 The iPAC-8000 module contains 512 Kbytes of Flash memory.

 MiniOS7 uses the last 64K bytes; the other parts of the memory are used to store

user programs or data.

 Each bit of the Flash memory only can be written from 1 to 0 and cannot be written

from 0 to 1.

 Before any data can be written to the Flash memory, the flash must be erased, first

which returns all data to 0xFF, meaning that all data bits are set to “1”. Once there

is completed, new data can be written.

API for writing data to the Flash Memory

1. FlashWrite()

The FlashWrite() must be called to write data to the Flash Memory.

API for reading data from the Flash Memory

2. FlashRead()

The FlashRead() must be called to read data from the Flash Memory.

Free

Free

Free

Free

Free

Free

Free

MiniOS7

0 x 8000

0 x 9000

0 x A000

0 x B000

0 x C000

0 x D000

0 x E000

0 x F000

Free: 448 K bytes

MiniOS7: 64 K bytes

Total Size: 512 K bytes

For example, to write an integer to segnment 0xD000, offset 0x1234 of the Flash

memory.

#include <stdio.h>

#include “8000a.h”

void main(void)

{

int data=0xAA55, data2;

char *dataptr;

int *dataptr2;

InitLib(); /* Initiate the 8000a library */

dataptr=(char *)&data;

FlashWrite(0xd000,0x1234, *dataptr++);

FlashWrite(0xd000,0x1235, *dataptr);

/* Read data from the Flash Memory (method 1) */

dataprt=(char *)&data2;

*dataptr=FlashRead(0xd000,0x1234);

*(dataptr+1)=FlashRead(0xd000,0x1235);

/* Read data from the Flash Memory (method 2) */

dataptr2=(int far *)_MK_FP(0xd000,0x1234);

data=*data;

}

 API for NVRAM 4.5.

 The iPAC-8000 equip an RTC (Real Time Clock), 31 bytes of NVRAM can be used

to store data.

NVRAM is SRAM, but it uses battery to keep the data, so the data in NVRAM does

not lost its information when the module is power off.

NVRAM has no limit on the number of the re-write times. (Flash and EEPROM both

have the limit on re-write times) If the leakage current is not happened, the battery

can be used 10 years.

API for writing data to the NVRAM

1. WriteNVRAM()

The WriteNVRAM() must be called in order to write data to the NVRAM.

API for reading data from the NVRAM

2. ReadNVRAM()

The ReadNVRAM() must be called in order to write data to the NVRAM.

For example, use the following code to write data to the NVRAM address 0.

#include <stdio.h>

#include “8000a.h”

void main(void)

{

int data=0x55, data2;

InitLib(); /* Initiate the 8000a library */

WriteNVRAM(0,data);

data2=ReadNVRAM(0); /* Now data2=data=0x55 */

}

For example, the following can be used to write an integer (two bytes) to NVRAM.

#include <stdio.h>

#include “8000a.h”

void main(void)

{

int data=0xAA55, data2;

char *dataptr=(char *)&data;

InitLib(); /* Initiate the 8000a library */

WriteNVRAM(0, *dataptr); /* Write the low byte */

WriteNVRAM(1, *dataptr+1); /* Write the high byte */

dataptr=(char *) &data2;

dataptr=ReadNVRAM(0); / Read the low byte */

(*dataptr+1)=ReadNVRAM(1); /* Read the high byte */

}

 API for 5-Digital LED 4.6.

The iPAC-8000 contains a 5-Digit 7-SEG LED with a decimal point on the left-hand

side of each digit, which be used to display numbers, IP addresses, time, and so on.

API for starting the 5-Digit 7-SEG LED

1. Init5DigitLed()

Before using any LED functions, the Init5DigitLed() must be called to initialize

the 5-Digit 7-SEG LED.

API for displaying a message on the 5-Digit 7-SEG LED

2. Show5DigitLed()

After the Init5DigitLed() is used to initialize the 5-Digit 7-SEG LED, the

Show5DigitLed() must be called to display information on the 5-Digits 7-SEG

LED.

For example, use the following code to display “8000E” on the 5-Digit 7-SEG LED.

#include <stdio.h>

#include “8000a.h”

void main(void)

{

InitLib(); /* Initiate the 8000a library */

Init5DigitLed();

Show5DigitLed(1,8);

Show5DigitLed(2,0);

Show5DigitLed(3,0);

Show5DigitLed(4,0);

Show5DigitLed(5,14); /* The ASCII code for the letter „E‟ is 14 */

}

 API for Timer 4.7.

 The iPAC-8000 can support a single main time tick, 8 stop watch timers and 8

counts down timers.

 The iPAC-8000 uses a single 16-bit timer to perform these timer functions, with a

timer accuracy of 1 ms..

API for starting the Timer

1. TimerOpen()

Before using the Timer functions, the TimerOpen() must be called at the

beginning of the program.

API for reading the Timer

2. TimerResetValue()

Before reading the Timer, the TimerResetValue() must be called to reset the

main time ticks to 0.

3. TimerReadValue()

After the TimerResetValue() has reset the main time ticks to 0, the

TimerReadValue() must be called to read the main time tick.

API for stopping the Timer

4. TimerClose()

Before ending the program, the TimerClose() must be called to stop the Timer.

For example, the following code can be used to read the main time ticks from 0

#include <stdio.h>

#include “8000a.h”

void main(void)

{

Unsigned long time iTime;

InitLib(); /* Initiate the 8000a library */

TimerOpen();

While(!quit)

{

If(Kbhit())

TimerResetValue(); /* Reset the main time ticks to 0 */

iTime=TimerReadValue(); /* Read the main time ticks from 0 */

}

TimerClose(); /* Stop using the iPAC-8000 timer function */

}

 API for WatchDog Timer (WDT) 4.8.

 The iPAC-8000 equips the MiniOS7, the small-cored operating system. MiniOS7

uses the Timer 2 (A CPU internal timer) as system Timer. It is 16-bits Timer, and

generate interrupt every 1 ms. So the accuracy of system is 1 ms.

 The Watch Dog Timer is always enabled, and the system Timer ISR (Interrupt

Service Routine) refreshes it.

 The system is reset by WatchDog. The timeout period of WatchDog is 0.8 seconds.

API for refreshing WDT

1. EnableWDT()

The WDT is always enabled, before user‟s programming to refresh it, the

EnableWDT() must be called to stop refreshing WDT.

2. RefreshWDT()

After EnableWDT() stop refreshing WDT, the RefreshWDT() must be called to

refresh the WDT.

3. DisableWDT()

After user‟s programming to refresh WDT, the DisableWDT() should be called

to automatically refresh the WDT.

For example, to refresh the Watchdog Timer.

#include <stdio.h>

#include “8000a.h”

void main(void)

{

Unsigned long time iTime;

InitLib(); /* Initiate the 8000a library */

Enable WDT();

While(!quit)

{

RefreshWDT();

User_function();

}

DisableWDT();

}

 API for MFS (For iPAC-8000-FD series only) 4.9.

Required library and header files:

MFS_V212.LIB and MFS.h

The iPAC-8000-FD series products equip an extra

64MB flash memory, the MFS is designed to

read/write file from/to the 64MB flash memory.

For full usage information regarding the hardware supported, applications, and the

specification, please refer to section “Appendix C. What is MiniOS7 File System

(MFS)”

 Summarize of the MFS functions:

Function Description

mfs_Init Initialize the file system.

mfs_Stop Allocated buffers are freed upon closing.

mfs_ResetFlash Initialize the file system. All files will lose.

mfs_X600Fs_GetLibVersion Gets the version number of function library.

mfs_GetLibDate Gets the create date of function library.

mfs_GetFileNo
Gets the total number of files stored in the NAND

Flash.

mfs_GetFreeSize
Gets the size of available space that can be used to

append file.

mfs_GetBadSize Gets the size of non-available space.

mfs_GetUsedSize Gets the size of used space.

mfs_GetFileSize Gets the size of file stored in the NAND Flash.

mfs_GetFileInfoByName
Uses the specified filename to retrieve file

information.

mfs_GetFileInfoByNo
Uses the file number index to retrieve file

information.

mfs_DeleteAllFiles Delete all files stored in the NAND Flash.

mfs_DeleteFile
Delete one selected file that has been written to the

NAND Flash.

mfs_OpenFile 1. Opens a file with a file name.

Function Description

2. Creates a new file.

mfs_CloseFile

Closes a file with a file handle.

All buffers associated with the stream are flushed

before closing.

mfs_ReadFile Reads specified bytes of data from a file.

mfs_WriteFile Appends specified bytes of data to a file.

mfs_Getc Gets a character from a file.

mfs_Putc Outputs a character data to the file.

mfs_Gets Gets a string from a file.

mfs_Puts Outs a string a file.

mfs_EOF
Macro that tests if end-of-file has been reached on a

file.

mfs_Seek Repositions the file pointer of a file.

mfs_Tell Returns the current file pointer.

mfs_EnableWriteVerify
Enable the data verification.

By default, the data verification is enabling.

mfs_DisableWriteVerify Disable the data verification.

 API for microSD 4.10.

Required library and header files:

SD_V102.LIB and microSD.h

The iPAC-8000 series can support one microSD card

and the size can be 1GB or 2 GB.

 Summarize of the microSD functions:

Function Description

pc_init Initializes the microSD socket library

pc_open
1. Open an existing file and return a file handle

2. Creates a new file.

pc_close Closes a file and release a file handle.

pc_read Reads the specified file

pc_write Writes the specified file

pc_seek
Moves the file pointer to relative offset from the

current offset

pc_tell Gets current offset of the file pointer

pc_eof Checks whether the end-of-file is reached

pc_format Formats the microSD card as FAT (FAT16)

pc_mkdir Creates a directory or subdirectory

pc_rmdir Removes an existing directory

pc_move
Renames an existing file or a directory, including the

subdirectory

pc_del Deletes the specified file

pc_deltree Deletes the specified directory or subdirectory

pc_isdir Checks whether the file is a directory

pc_isvol Checks if is a volume

pc_size Gets the size of the specified file

pc_set_cwd Sets the current working directory

pc_get_cwd Gets the pathname of the current working directory

pc_gfirst Moves the pointer to the first element

pc_gnext Moves the pointer to the next element

Function Description

pc_gdone Moves the pointer to the last element

pc_get_freeSize_KB Gets the free space of the SD memory card

pc_get_usedSize_KB Gets the used space of the SD memory card

pc_get_totalSize_KB Gets the total size of the SD memory card

pc_get_attributes Gets the file attributes

pc_set_attributes Sets the file attributes

pc_get_errno Gets the error number

API for starting microSD

1. pc_ Init()

Before using any miscroSD functions, PC_Init() must be called to initialize the

microSD.

API for enabling/disabling microSD

3. pc_open()

Before writing/reading data to/from the microSD card, PC_open() must be

called to open the file.

4. pc_close()

After the data has finished being written/read to/from the microSD, PC_close()

must be called to close the file with a file handle.

API for writing data to the microSD

5. pc_write()

After using PC_open() to open the file, PC_write() must be called to read data

from the microSD.

For example, writing data to the microSD

#include <string.h>

#include <stdio.h>

#include “8000a.h”

#include “microSD.h”

{

 int fd, iRet;

 InitLib();

 If(pc_init())

 {

 Print(“Init microSD ok\n\r”);

 }

 else

 {

 Print(“Init microSD failed\n\r”);

 iRet=pc_get_errno();

 switch(iRet)

 {

 case PCERR_BAD_FORMAT: //1

 Print("Error 01: format is not FAT\n\r");

 break;

 case PCERR_NO_CARD: //2

 Print("Error 02: no microSD card\n\r");

 break;

 default:

 Print("Error %02d: unknow error\n\r",iRet);

 }

 }

fd=pc_open(“test.txt”,(word)(PO_WRONLY|PO_CREAT|PO_APPEND),(word

)(PS_IWRITE|PS_IREAD));

 if(fd>=0)

 {

 pc_write(fd,”1234567890”,10); //write 10 bytes

 pc_close(fd);

 }

}

API for reading data from the microSD

6. pc_read()

After using PC_open() to open the file, PC_read() must be called to read data

from the microSD.

For example, reading data from the microSD:

#include <string.h>

#include <stdio.h>

#include “8000a.h”

#include “microSD.h”

{

 int fd, iRet;

 unsigned char Buffer[80];

 InitLib();

 If(pc_init())

 {

 Print(“Init microSD ok\n\r”);

 }

 else

 {

 Print(“Init microSD failed\n\r”);

 iRet=pc_get_errno();

 switch(iRet)

 {

 case PCERR_BAD_FORMAT: //1

 Print("Error 01: format is not FAT\n\r");

 break;

 case PCERR_NO_CARD: //2

 Print("Error 02: no microSD card\n\r");

 break;

 default:

 Print("Error %02d: unknow error\n\r",iRet);

 }

 }

fd=pc_open(“test.txt”,(word)(PO_RDONLY),(word)(PS_IWRITE|PS_IREAD));

 if(fd>=0)

 {

 iRet=pc_read(fd,Buffer,10); //reads 10 bytes

 Buffer[10]=0; //adds zero end to the end of the string.

 pc_close(fd);

 Print(“%s”,Buffer);

 }

}

For more demo program about the microSD, please refer to:

CD:\NAPDOS\iPAC8000\Demo\Basic\microsd\

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/microsd/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/microsd/

Appendix A. What is MiniOS7?

MiniOS7 is an embedded ROM-DOS operating system design by ICP DAS. It is

functionally equivalent to other brands of DOS, and can run programs that are

executable under a standard DOS.

DOS (whether PC-DOS, MS-DOS or ROMDOS) is a set of

commands or code that tells the computer how to process

information. DOS runs programs, manages files, controls

information processing, directs input and output, and performs

many other related functions.

The following table compares the features between MiniOS7 and ROM-DOS:

Feature MiniOS7 ROM-DOS

Power-up time 0.1 sec 4 ~ 5 sec

More compact size < 64 K bytes 64 K bytes

Support for I/O expansion bus Yes No

Support for ASIC key Yes No

Flash ROM management Yes No

OS update (Upload) Yes No

Built-in hardware diagnostic functions Yes No

Direct control of 7000 series modules Yes No

Customer ODM functions Yes No

Free of charge Yes No

Appendix B. What is MiniOS7 Utility?

MiniOS7 Utility is a tool for configuring,

uploading files to all products embedded with

ICP DAS MiniOS7.

Since version 3.1.1, the Utility can allow users

remotely access the controllers (7188E,

8000E..., etc) through the Ethernet.

Functions

 Supported connection ways

1. COM port connection (RS-232)

2. Ethernet connection (TCP & UDP)

(Supported since version 3.1.1)

 Maintenance

1. Upload file(s)

2. Delete file(s)

3. Update MiniOS7 image

 Configuration

1. Date and Time

2. IP address

3. COM port

4. Disk size (Disk A, Disk B)

 Check product information

1. CPU type

2. Flash Size

3. SRAM Size

4. COM port number

…, etc.

Including frequently used tools

a. 7188XW

b. 7188EU

c. 7188E

d. SendTCP

e. Send232

f. VxComm Utility

Upload location:

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_utility/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/minios7/utility/minios7_utility/

Appendix C. What is MiniOS7 File System (MFS)?

MiniOS7 file system, MFS, offers a rugged alternative to mechanical storage systems.

Designed for the 64MB NAND flash memory,

MFS implements a reliable file system with C language API for embedded data logger

applications on MiniOS7.

Hardware Supported

iPAC-8000-FD (With 64MB Flash Memory), NVRAM: all of the 31 bytes.

Applications

Log data with timestamp, Log data and forward via the Ethernet

MFS Specifications

Item Description

Disk size 1/2 size of the flash memory size

File number 456 files max. for each disk

File size Disk Size max. for each file

File name 12 bytes max (case sensitive)

File operation modes

1. Read only

2. Write only: Creates a new file to write data, or overwrite a

file (if the file is already exit).

3. Append: appends data to a file.

I/O

Devices

I/O

Functions

User‟s program

64MB

NAND

Flash

Memory

Serial

Devices

COM Port

Functions
MFS

File handle

10 max for each disk.

For read mode: the 10 file handles can all be used for reading

operation on each disk. Total 20 files can be opened for

reading mode.

For write and append mode: only 1 file handle can be used for

writing operation on all disks.

Writing verification

Yes. Default is enabled.

Calling mfs_EnableWriteVerification and

mfs_DisableWriteVerification can change the setting.

Automate file system

recovery

Yes.

If an unexpected reset or power loss occurs, closed files, and

files opened for reading are never at risk. Only data written

since the last writing operation (mfs_WriteFile,) might be lost.

When the file system reboots, it restores the file system to its

state at the time of the last writing operation.

Writing speed

mfs_WriteFile:

147.5 KB/Sec (verification enabled) (default)

244.0 KB/Sec (verification disabled)

mfs_Puts:

142.1 KB/Sec (verification enabled) (default)

229.5 KB/Sec (verification disabled)

Reading speed
mfs_ReadFile: 734.7 KB/Sec

mfs_Gets: 414.2 KB/Sec

Max. length of writing

data
32767 bytes.

Max. length of reading

data
32767 bytes.

Resources upload

 MFS SDKs:

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/lib/

 MFS Demos:

http://ftp.Icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/64mb_flash/

http://ftp.icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/lib/
http://ftp.icpdas.com/pub/cd/8000cd/napdos/ipac8000/demo/basic/64mb_flash/

Appendix D. More C Compiler Settings

This section describes the setting of the following compilers:

 Turbo C 2.01 Compiler

 BC++ 3.1 IDE

 MSC 6.00 Compiler

 MSVC 1.50 Compiler

D.1. Turbo C 2.01

You have a couple of choices here, you can:

1: Using a command line

For more information, please refer to

CD:\8000\NAPDOS\8000\841x881x\Demo\hello\Hello_C\gotc.bat

tcc -Ic:\tc\include -Lc:\tc\lib hello1.c ..\..\Demo\basic\Lib\iPAC-8000.lib

2: Using the TC Integrated Environment

Step 1: Executing the TC 2.01

Step 2: Editing the Project file

Adding the necessary library and file to the project

Step 3: Save the project and entering a name, such as LED.prj

Step 4: Load the Project

Step 5: Change the Memory model (Large for iPAC-8000.lib) and set the

Code Generation to 80186/80286

Step 6: Building the project

D.2. BC++ 3.1. IDE

Step 1: Executing the Borland C++ 3.1

Step 2: Creating a new project file (*.prj)

Step 3: Add all the necessary files to the project

Step 4: Change the Memory model (Large for iPAC-8000.lib)

Step 5: Set the Advanced code generation options and Set the Floating

Point to Emulation and the Instruction Set to 80186

Step 6: Set the Entry/Exit Code Generation option and setting the DOS

standard

Step 7: Choosing the Debugger…and set the Source Debugging to None

Step 8: Make the project

D.3. MSC 6.00

Step 1: In the source file folder, create a batch file called Gomsc.bat using

the text editor

/C Don't strip comments /GS No stack checking

/Fpa: Calls with altmath /Fm [map file]

/G1: 186 instructions /AL Large model

Step 2: Run the Gomsc.bat file

Step 3: A new executable file will be created if it is successfully compiled

D.4. MSVC 1.50

Step 1: Run MSVC.exe

Step 2: Create a new project (*.mak) by entering the name of the project in

the Project Name field and then select MS-DOS application (EXE)

as the Project type

Step 3: Add the user's program and the necessary library files to the

project

Step 4: Set the Code Generation on the Compiler.

Step 5: Change the Memory model (large for iPAC-8000.lib)

Step 6: Remove the xcr, afxcr library from the Input Category

Step 7: Remove the OLOGO option from the miscellancous Category.

Step 8: Rebuild the project

	Table of Contents
	1. Introduction
	1.1. Features
	1.2. Specification
	1.3. Overview
	1.4. Dimension
	1.4.1. 4 Slots
	1.4.2. 8 Slots

	1.5. Companion CD

	2. Getting Started
	2.1. Hardware Installation
	2.2. Software Installation
	2.3. Boot Configuration
	2.4. Uploading iPAC-8000 Programs
	2.4.1. Establishing a connection between PC and iPAC-8000
	2.4.1.1. COM1 Connection
	2.4.1.2. USB Connection
	2.4.1.3. Ethernet Connection (for iP-8441 and iP-8841 modules only)

	2.4.2. Uploading and executing iPAC-8000 programs
	2.4.3. Making programs start automatically

	2.5. Updating iPAC-8000 OS image

	3. “Hello World” - Your First Program
	3.1. C Compiler Installation
	3.1.1. Installing the C compiler
	3.1.2. Setting up the environment variables

	3.2. iPAC-8000 APIs
	3.3. First Program in iPAC-8000

	4. APIs and Demo References
	4.1. API for COM Port
	4.1.1. Types of COM port functions
	4.1.2. API for MiniOS7 COM port
	4.1.3. API for standard COM port
	4.1.4. Port functions Comparison
	4.1.5. Request/Response protocol define on COM port

	4.2. API for I/O Modules
	4.3. API for EEPROM
	4.4. API for Flash Memory
	4.5. API for NVRAM
	4.6. API for 5-Digital LED
	4.7. API for Timer
	4.8. API for WatchDog Timer (WDT)
	4.9. API for MFS (For iPAC-8000-FD series only)
	4.10. API for microSD

	Appendix A. What is MiniOS7?
	Appendix B. What is MiniOS7 Utility?
	Appendix C. What is MiniOS7 File System (MFS)?
	Appendix D. More C Compiler Settings
	D.1. Turbo C 2.01
	D.2. BC++ 3.1. IDE
	D.3. MSC 6.00
	D.4. MSVC 1.50

