

PCI-2602U Series Board User Manual

Multi-function Boards

Version 1.2, Mar. 2015

SUPPORT

This manual relates to the following board: PCI-2602U

WARRANTY

All products manufactured by ICP DAS are warranted against defective materials for a period of one year from the date of delivery to the original purchaser.

WARNING

ICP DAS assumes no liability for damages consequent to the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

COPYRIGHT

Copyright © 2014 by ICP DAS. All rights are reserved.

TRADEMARKS

Names are used for identification purposes only and may be registered trademarks of their respective companies.

CONTACT US

If you have any questions, feel to contact us by email at: <u>service@icpdas.com</u> or <u>service.icpdas@gmail.com</u>

TABLE OF CONTENTS

Ρ	Packing List					
R	elated I	nformation4				
1	. Int	roduction5				
	1.1.	General Description5				
	1.2.	Features				
	1.3.	Specifications7				
	1.4.	Applications				
2	. Harc	dware Configuration9				
	2.1.	Board Layout9				
	2.2.	Jumper/Programmable Setting10				
	2.2.1	. JP1 EEPROM Write Protection				
	2.2.2	. Card ID Switch				
	2.2.3	Analog Input Type Settings11				
	2.2.4	. Digital Input/Output Mode Settings				
	2.3.	System Block Diagram				
	2.4.	Analog Input Signal Connections14				
	2.5.	Analog Output Signal Connections				
	2.6.	Pin Assignments				
3	Оре	ration				
	3.1.	AD Operation				
	3.2.	DI/O Operation				
	3.3.	CON1 I/O Operation				
4	. Harc	dware Installation				
5	. Soft	ware Installation				
	5.1	Obtaining/Installing the Driver Installer Package				
	5.2	PnP Driver Installation				

PCI-2602U Multi-Function Boards

	5.3	Verifying the Installation	
5.3.1		Accessing Windows Device Manager	
	5.3.2	Check the Installation	
6.	Testi	ing the PCI-2602U Board	
	6.1	Self-Test Wiring	
	6.2	Execute the Test Program	39
7.	I/O I	Register Addresses	
	7.1.	Determining the I/O Address using DOS	
	7.2.	The I/O Address Map	44
	7.3.	Bar 1 (PLX)	46
	7.3.1	PLX Control/Status Registers	
	7.4.	Bar 3 (MMIO)	47
	7.4.1	Interrupt and Initialize Control/Status Registers	47
	7.4.2	Digital I/O Registers	50
	7.4.3	Analog Input Registers	52
	7.4.4	Analog output registers	55
8.	Calil	bration	
	8.1.	Introduction	57
	8.2.	Step-by-Step Calibration Process	58
9.	PCI-2	2602U Windows API Function	59
Ap	pendix	: Daughter Boards	60
	A1. D	N-68A	60

Packing List

The shipping package contains the following items:

	One multi-function board:	
	PCI-2602U Series	If any of these items are missing or
		damaged, contact the dealer from
۷ /	One printed Quick Start Guide	whom you purchased the product.
\sim		Save the shipping materials and
PCI ter bas kepitelse baar		carton in case you need to ship or
	One software utility CD	store the product in the future.

Related Information

Product Page:

http://www.icpdas.com/root/product/solutions/pc_based_io_board/pci/pci-2602.html

Documentation and Software for the UniDAQ SDK: CD:\NAPDOS\PCI\UniDAQ\ http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/

1. Introduction

The PCI-2602U board provides 1MHz 16/8-channel 16-bit Analog Input, 2-channel 16-bit Analog Output with 32-channel programmable Digital Input/Output

1.1. General Description

The PCI-2602U is a powerful multifunction board that features a 1MS/s sampling rate and a 16-bit resolution converter that is suitable for the majority of industrial applications. The PCI-2602U board includes a universal PCI interface that supports both the 3.3 V and the 5V PCI bus, and features a continuous, 1MS/s 16-bit high resolution AD converter, 8 k Sample hardware AD FIFO, 2-channel 16-bit DA converter, 32-channel programmable Digital Input/Output and Digital Output Readback. The PCI-2602U also provides either 16 single-ended or 8 differential jumperless Analog Input channels and is equipped with a high-speed PGA featuring programmable gain controls.

The PCI-2602U provides five programmable trigger methods including software-trigger, Post-trigger, Middle-trigger, Pre_trigger and Delay_trigger. The AD channel scan function of the PCI-2602U is called "MagicScan", and removes most of the work required in acquiring AD values, such as selecting the channel, setting the gain and setting time, triggering the ADC and acquiring the data. With the built-in MagicScan function and the interrupt features of the PCI-2602U, the CPU in the Host system is effectively released from resource-heavy the data acquisition tasks. Even in channel scan mode, different gain code can be implemented for each channel, and the sampling rate can still reach a total of 1MS/s.

The PCI-2602U also includes an onboard Card ID switch that can be used to set a unique ID for each board so that they can be instantly recognized if two or more PCI-2602U boards are installed in the same computer. If the Digital Input channels are disconnected, the status of the Digital Input will remain in Low instead of floating.

1.2. Features

The following is an overview of the general features provided by the PCI-2602U series board. Refer to Section 1.3 for more details.

Interface

- Universal PCI (3.3 V/5 V)
- 2-channel bus mastering scatter/gather DMA
- Card ID switch
- Auto-calibration function

Analog Input

- One 16-bit AD converter with maximum of 1M Samples/second
- 16 single-ended or 8 differential programmable Analog Inputs channels
- Multiple AD trigger methods
- Programmable gain and offset control
- On board 8192-sample AD FIFO

Analog Output

- One DA converter
- 2-channel 16-bit voltage output
- Voltage output range: +/-10 V, +/-5 V, 0 ~ +10 V, 0 ~ +5 V
- On board 512-sample DA FIFO
- No bus loading in repetitive waveform generation applications

Digital Input/Output

- On board 512-sample DO FIFO
- 32-channel programmable DI/O (4 x 8-channel).
- Digital Output readback function
- Programmable input digital filter for all Digital Input signals
- No bus loading in repetitive 8-bit digital pattern generation applications

1.3. Specifications

Model	PCI-2602U				
Analog Input					
Channels	16 single-ended/8 differential				
A/D Converter	16-bit, 1 μs conversion time				
Sampling Rate	1 MS/s				
FIFO Size	8192 samples				
Over voltage Protection	Continuous +/-35 Vp-p				
Input Impedance	10,000 MΩ/4pF				
Trigger Modes	Software, Pacer, External				
Data Transfer	Polling, Interrupt, DMA				
Accuracy	0.05 % of FSR ±1 LSB @ 25 °C, ± 10.24 V				
Input Dance	Gain: 0.4, 0.8, 1.6				
	Bipolar Range: ±10.24 V, ±5.12 V, ±2.56 V,				
Analog Output					
Channels	2				
Resolution	16-bit				
Accuracy	± 6 LSB				
Output Range	±5 V, ±10 V, 0 ~ 10 V, 0 ~ 5 V, ±EXT_REF, 0~EXT_REF				
Output Driving	+/- 5 mA				
Slew Rate	8.33 V/μs				
Output Impedance	0.1 Ω (Max.)				
Operating Mode	Static update, Waveform generation (only for Channel 0)				
Output Rate	20 MS/s (Max.)				
FIFO Size	512 samples				
Programmable I/O					
Channels	32(4 port programmable)				
Digital Input					
Compatibility	5 V/TTL				
Input Voltage	Logic 0: 0.8 V (Max.)/Logic 1: 2.0 V (Min.)				
Response Speed	1.0 MHz (Typical)				
Trigger Mode	Software				
Data Transfer	Polling				

Digital Output						
Compatibility	5 V/CMOS					
Output Voltage	Logic 0: 0.4 V (max.)/Logic 1: 2.4 V (min.)					
Output Capability	Sink: 6 mA @ 0.33 V/Source: 6 mA @ 4.77 V					
DO Readback	Yes					
Operation Mode	Static update, Waveform generation					
Response Speed	4.0 MHz (Typical)					
DO Sample Clock frequency	10 MHz					
General						
Bus Type	3.3 V/5 V Universal PCI, 32-bit					
Data Bus	16-bit					
Card ID	Yes (4-bit)					
I/O Connector	SCSI 68-pin					
Dimensions (L x W x D)	149 mm x 102 mm x 22 mm					
Power Consumption	1 A @ +5 V (Max.)					
Operating Temperature	0 ~ 60 °C					
Storage Temperature	-20 ~ 70 °C					
Humidity	5 ~ 85% RH, Non-condensing					

1.4. Applications

- Signal Analysis
- FFT and Frequency Analysis
- Transient Analysis
- Temperature Monitor
- Vibration Analysis
- Energy Management
- Other Industrial and Laboratory Measurement and Control

2. Hardware Configuration

2.1. Board Layout

SW1 :		DIP Switch used to	configure t	the Board	ID
-------	--	--------------------	-------------	-----------	----

- TP1 : AGND for AD Calibration, Green
- TP2 : 10 V for AD Calibration, Red
- TP3 : 5 V for AD Calibration, Yellow
- CON1 : I/O Signals
- TB1 : (Sync_I, Sync_O) used Board Synchronization
- JP1 : EEPROM Write Protection

2.2. Jumper/Programmable Setting

2.2.1. JP1 EEPROM Write Protection

Jumper JP1 is used to select the EEPROM Write Protection settings. When the jumper is set to the <u>WRTIE PROTECT (LOCK)</u> position (default), no data can be written to the EEPROM. To allow data to be written to the EEPROM, set JP1 to the <u>UNLOCK</u> position, as illustrated in the diagram below.

2.2.2. Card ID Switch

The PCI-2602U includes an onboard Card ID switch (SW1) that enables the board to be recognized via software if two or more PCI-2602U boards are installed in the same computer. The default Card ID is 0x0. For more details regarding the SW1 Card ID settings, refer to the table below.

Card ID	1	2	3	4
(Hex)	ID0	ID1	ID2	ID3
(*) 0x0	ON	ON	ON	ON
0x1	OFF	ON	ON	ON
0x2	ON	OFF	ON	ON
0x3	OFF	OFF	ON	ON
0x4	ON	ON	OFF	ON
0x5	OFF	ON	OFF	ON
0x6	ON	OFF	OFF	ON
0x7	OFF	OFF	OFF	ON
0x8	ON	ON	ON	OFF
0x9	OFF	ON	ON	OFF
0xA	ON	OFF	ON	OFF
0xB	OFF	OFF	ON	OFF
0xC	ON	ON	OFF	OFF
0xD	OFF	ON	OFF	OFF
0xE	ON	OFF	OFF	OFF
0xF	OFF	OFF	OFF	OFF

Table 2.1	(*) Default Settings; OFF → 1; ON	$\rightarrow 0$
-----------	-----------------------------------	-----------------

(Default Settings)

2.2.3. Analog Input Type Settings

The Analog Input type can be selected as either single-ended or differential. An example of the configuration is illustrated in the figure below.

Note that before the Analog Input type settings, you must complete the hardware and software installation. Refer to <u>Chapter 4 Hardware Installation</u> and <u>Chapter 5 Software Installation</u> for more detailed information.

Step 1: Open the Windows Device Manager.

- Step 2: Expand the DAQ Card item, and right-click the name of the PCI-2602U.
- Step 3: Select the Properties item from the popup menu.
- Step 4: In the Properties dialog, click the Advanced tap.
- Step 5: In the Analog Input Type section, select the Differential or Single Ended depending on your requirements.

2.2.4. Digital Input/Output Mode Settings

The Digital Input/Output mode can be selected as either Digital Input or Digital Output depending on the specific configuration requirements. An example of the configuration is illustrated in the figure below.

Note that before the Digital Input/Output mode settings, you must complete the hardware and driver installation. Refer to <u>Chapter 4 Hardware Installation</u> and <u>Chapter 5 Software Installation</u> for more detailed information.

- **Step 1:** Open the Windows **Device Manager**.
- Step 2: Expand the DAQ Card item, and right-click the name of the PCI-2602U.
- Step 3: Select the Properties item from the popup menu.
- Step 4: In the Properties dialog, click the Advanced tap.
- Step 5: In the PA/PB/PC/PD Digital I/O Mode sections, select the Digital Output or Digital Input depending on your requirements.

	🚇 Device Manager		
	File Action View H <mark>elp</mark>		
		' 🔢 🙁 🗶 🙋	L
	RD-CB082A984429 Computer DAQCard Imp DAQCard Disk drives	2 02U Multi-function Boar	Update Driver
	🕀 😼 Display adapters	1	Disable
[UniDAQ]PCI-2602U Multi-function Board	Properties 🛛 🛛 🛛 🖓	45	Uninstall
Genera Advanced 4 Details Resource	s De	vices	Scan for hardware changes
	;ont	rollers 3	Properties
Analog Input Type C Differential	oint	ing devices	
PA Digital I/O Mode C Digital Outpu C Digital Input PB Digital I/O Mode C Digital I/O Mode C Digital Outpu C Digital Input C Digital	al I/O Mode al Outpu	5	
	Save Setting(S)		

2.3. System Block Diagram

The following is the block diagram for the PCI-2602:

2.4. Analog Input Signal Connections

The PCI-2602U can be used to measure either single-ended or differential type Analog Input signals. Although certain signals can be measured using either mode, others, however, can only be measured in one mode or the other, and the most suitable mode for the measurement must be determined beforehand.

In general, there are four different methods that can be used for connecting Analog Input signals, which are shown below in Figures 2.4-1 to 2.4-5. The connection method depicted in Figure 2.4-1 is suitable for grounding source Analog Input signals. The connection method depicted in Figure 2.4-3 is used to measure more channels than that shown in Figure 2.4-1, but is only suitable for large Analog Input signals. The connection method shown in Figure 2.4-4 is suitable for thermocouple input signals, and the connection method illustrated in Figure 2.4-5 is suitable for floating source Analog Input signals.

Warning:

As shown in Figure 2.4-4, the maximum common mode voltage between the Analog Input source and the AGND pin is 70 V_{p-p} , so care must be taken to ensure that the input signal is below this level before continuing. If the common mode voltage is set to above 70 V_{p-p} , the input multiplexer will be permanently damaged.

The easiest way of determining the most suitable configuration method for the input signal connection is as follows.

No.	Туре	Connection Method
1	Grounding the source input signal	See Figure 2.4-1
2	Thermocouple input signal	See Figure 2.4-4
3	Floating source input signal	See Figure 2.4-5
4	If the Vin is > 1 V and the gain is <= 10 V, and more channels are needed	See Figure 2.4-3
5	Current source input signal	See Figure 2.4-6

If the characteristics of the input signal are unknown or unclear, test the signal using the following procedure:

- 1. Test the signal using the connection method illustrated in Figure 2.4-1 and record the result
- 2. Test the signal using the connected method illustrated in Figure 2.4-4 and record the result
- 3. Test the signal using the connected method illustrated in Figure 2.4-5 and record the result
- 4. Compare the three results and select the most suitable connection

Figure 2.4-1 Connecting to the grounding source input (correct method)

Figure 2.4-2 Ground loop input (incorrect method)

Figure 2.4-4 Connecting to a thermocouple input configuration

Note: If the input is not a thermocouple signal, an oscilloscope, rather than a voltage meter or multimeter, should be used to measure the common mode voltage of the Vin before connecting to the PCI-2602U.

CAUTION: For the connection method shown in Figure 2.4-4, the maximum common mode voltage between the Analog Input source and the AGND pin is 70 V_{p-p} , so ensure that the input signal is below this value before continuing. If the common mode voltage is above 70 V_{p-p} , the input multiplexer will be permanently damaged.

Figure 2.4-5 Connecting to a floating source configuration

Figure 2.4-6 Connecting to a 4 ~ 20 mA Source

Example: A 20 mA source current through a 125 Ω resistor (e.g. 125 Ω , 0.1% DIP Resistors) between + and – terminals and the board will read a 2.5 V_{DC} voltage. You can use the I = V/R (Ohm's law) to calculate what value the source current should have.

Current (I) = Voltage (V) / Resistance (R)

= 2.5 V / 125 Ω = 0.02 A = 20 m

Signal Shielding

- The signal shielding connections methods in Figures 2.4-1to 2.4-6 are all the same
- Use a single-point connection to the frame ground, rather than the AI_GND, AO_GND or D_GND pins

2.5. Analog Output Signal Connections

The PCI-2602U board provides two DA output channels, AO0 and AO1, and the onboard -5 V (-10 V) reference signal on the PCI-2602U may be used to generate a DA output range of 0 V to +5 V (+10 V). A DA output range may also be created through the external reference signal AOx_REF, where the external reference input range is +/-10 V. For example, connecting to an external reference signal of +8 V will generate a DA output of 0 to +8 V.

Figure 2.5-2 Connecting to an Analog Output channel for use as an external reference signal

2.6. Pin Assignments

Pin Assign- ment		Ter		No.	Pi Assi me	n gn- :nt	
+5 V	(Output)	01		35	+12 V ((Output)	
Ext_TI	RG	02		36	Cnt0_0	GATE	
Trg_G	ATE	03		37	Cnt0_C	UT	Note:
Pacer_	OUT	04		38	Cnt0_0	CLK	AIO ~ AI15: Single-ended
D_GN	D	05		39	D_GNI	C	$(\Delta I0 + \Delta I0 -) \sim (\Delta I14 + \Delta I14 -) \cdot Differential$
PD7		06		40	PD6		
PD5		07		41	PD4		
PD3		08		42	PD2		
PD1		09		43	PD0		
PC7		10		44	PC6		
PC5		11		45	PC4		
PC3		12		46	PC2		
PC1		13		47	PC0		
D_GNI	D	14		48	D_GND)	
PB7		15		49	PB6		
PB5		16		50	PB4		
PB3		17		51	PB2		
PB1		18		52	PBO		
PA7		19		53	PA6		
PA5		20		54	PA4		
PA3		21		55	PA2		
PA1		22		56	PA0		
AO_GN	ND	23		57	AO_GN	D	
A01_0	UT	24		58	A00_0	UT	
AO1_F	REF	25		59	AO0_RI	EF	
AI_GN	D	26		60	AI_GN	D	
AI15	AI14-	27		61	AI14	AI14+	
AI13	AI12-	28		62	AI12	AI12+	
AI11	AI10-	29		63	AI10	AI10+	
AI9	AI8-	30		64	AI8	AI8+	
AI7	AI6-	31		65	AI6	AI6+	
AI5	AI4-	32		66	AI4	AI4+	
AI3	AI2-	33		67	AI2	AI2+	
AI1	AI0-	34		68	AIO	AI0+	
S.E.	Diff.				S.E.	Diff.	
Female SCSI 68-pin (CON					1)		

Description of the I/O Connector Signals					
AIO ~ AI15 AIO+ ~ AI7+ AIO- ~ AI7-	AI_GND	Input	Analog Input channels 0 - 15. Each channel pair, Alx+, Alx- (x = 0, 2 14), can be configured as either two single-ended inputs or one differential input.		
AI_GND	-	-	Analog Input Ground.		
AO0_OUT AO1_OUT	AO_GND	Input	Analog Output channels 0 and 1.		
AO0_REF AO1_REF	AO_GND	Output	External Reference for Analog Output channel 0 and 1.		
AO_GND	-	-	Analog Output Ground.		
PA0 ~ PA7 PB0 ~ PB7 PC0 ~ PC7 PD0 ~ PD7	D_GND	Input Output	Digital Input/Output channels.		
D_GND	-	-	Digital Ground		
Cnt0_CLK	D_GND	Input	Clock Input for Counter0, which can be either an external or an internal source, as set using software.		
Cnt0_OUT	D_GND	Output	Counter0 Output.		
Cnt0_GATE	D_GND	Input	Counter0 Gate Control.		
Pacer_OUT	D_GND	Output	Pacer Clock Output. This pin generates one pulse for each pacer clock when turned on. If the AD conversion is in pacer trigger mode, this signal can be used as a synchronous signal for other applications.		
Trg_GATE	D_GND	Input	AD External Trigger Gate. When the Trg_GATE pin is connected to the DGND pin, it will disable the external trigger signal to the input.		
Ext_TRG	D_GND	Input	AD External Trigger.		
+12 V	D_GND	Output	+12 V _{DC} Source.		
+5 V	D_GND	Output	+5 V _{DC} Source		

3. Operation

3.1. AD Operation

The following is the block diagram for the AD system:

Either the Ext_Trg or the Sync_I trigger signal is used to initiate a sequence of AD operations. If the Software Trigger is used, the AD operations will be initiated without using the Ext_Trg or the Sync_I signals.

The following is an overview of the five trigger modes:

Trigger Mode		Description
Software-trigger	CHD Software Trigger Acquire Data Analeg Signal Start Stop	No trigger signal is used and all AD operations are initiated using software.
Post-trigger	Cth External Trigger	Either the Ext_Trg or the Sync_I trigger signal is used to initiate the AD operations.
Middle-trigger	Gin External Trigger	Either the Ext_Trg or the Sync_I trigger signal is used to indicate the middle of the AD operations.
Pre-trigger	Citin External Trigger Brent Accudes Data Accuses Signal Start Stap	Either the Ext_Trg or the Sync_I trigger signal is used to indicate the end of the AD operations.
Delay-trigger	Cth Bvent Bvent Delay Belay Stark Step	Either the Ext_Trg or the Sync_I trigger signal is used to start the delay timer that is used to initiate the AD operations. The only difference between a Post-trigger and the Delay-trigger is the inclusion of the delay timer.

After the clock signal is generated, AD data will be recorded and saved to the buffer or the FIFO. Two clock sources are provided, a software clock and a pacer clock.

The saved data can be transferred to the memory on the PC using either software polling, Interrupt transfer or DMA transfer.

Different combinations of trigger mode, clock signal and data transfer can be used to create four different types of AD applications, which are summarized below:

Trigger Mode	Clock Mode	Transfer Mode	FIFO (K Samples)	Trigger Source
Software Trigger	Software	Polling	N/A	N/A
Software Trigger Post-Trigger Middle-Trigger Pre-Trigger Delay-Trigger	Pacer Clock	Polling	8	Ext_Trg Sync_I
Software Trigger Post-Trigger Delay-Trigger	Pacer Clock	Interrupt	8	Ext_Trg Sync_I
Software-Trigger Post-Trigger Delay-Trigger	Pacer Clock	DMA	8	Ext_Trg Sync_I

Notes:

The **Ext_Trg** source is Pin2 on CON1. Refer to <u>Section 2.6</u> for details. The **Sync_I** source is Pin1 of TB1. Refer to <u>Section 2.1</u> for details.

3.2. DI/O Operation

Four groups are provided on the PCI-2602U board, PA, PB, PC and PD, and each group consists of 8 channels. When the system is first switched on, all groups are configured as Digital Input. A custom program can be used to independently re-configure each of the four groups as either Digital Input or Digital Output, meaning that read operations from Digital Output group will acquire Digital Output values, but write operations to the Digital Input group will not do anything. A digital filter is also provided for all Digital Input ports.

When the PA group is set to output mode, a digital pattern can be continuously generated on a Digital Output port using a user-defined data pattern and data rate that is based on 100 ns high-resolution timing.

	P Ass me	'in ign- ent	Ter	minal	No.	Pi Assi me	n gn- :nt
	+5 V	(Output)	01		35	+12 V	(Output)
	Ext_T	RG	02		36	Cnt0_C	GATE
	Trg_G	GATE	03		37	Cnt0_C	TUC
PD Group	Pacer	OUT	04		38	Cnt0_0	CLK
	D_GN	ID	05		39	D_GNI	2
	PD7		06		40	PD6	
	PD5		07		41	PD4	
	PD3		08		42	PD2	
	PD1		09		43	PD0	
	PC7		10		44	PC6	
DC Crown	PC5		11		45	PC4	
PC Group —	PC3		12		46	PC2	
	PC1		13		47	PC0	
	D_GN	ID	14		48	D_GND)
	PB7		15		49	PB6	
	PB5		16		50	PB4	
PB Group —	PB3		17		51	PB2	
	PB1		18		52	PB0	
	PA7		19		53	PA6	
	PA5		20		54	PA4	
	PA3		21		55	PA2	
	PA1		22		56	PA0	
	AO_G	ND	23		57	AO_GN	D
PA Group	A01_0	TUC	24		58	A00_C	UT
	AO1_REF		25		59	AO0_R	EF
	AI_GN	ND	26		60	AI_GN	D
	AI15	AI14-	27		61	AI14	AI14+
	AI13	AI12-	28		62	AI12	AI12+
	AI11	AI10-	29		63	AI10	AI10+
	AI9	AI8-	30		64	AI8	AI8+
	AI7	AI6-	31		65	AI6	AI6+
	AI5	AI4-	32		66	AI4	AI4+
	AI3	AI2-	33		67	AI2	AI2+
	AI1	AI0-	34		68	AIO	AI0+
	S.E.	Diff.				S.E.	Diff.
			Female S	CSI 68	B-pin (CON	11)	

3.3. CON1 I/O Operation

The Counter0 pin on the CON1 connector can be used as either an event counter or a pulse output. The designed as a Board Synchronization Interface.

The block diagram for the CKO Event Counter is illustrated below:

The block diagram for the CounterO Pulse Output is illustrated below:

4. Hardware Installation

Note:

It is recommended that the driver is installed before installing the hardware as the computer may need to be restarted once the driver is installed in certain operating systems, such as Windows 2000 or Windows XP, etc. Installing the driver first helps reduce the time required for installation and restarting the computer.

To install PCI-2602U board, follow the procedure described below:

Step 1: Install the driver for the PCI-2602U card on your computer.

For detailed information about the driver installation, refer to <u>Chapter 5</u> <u>Software Installation</u>.

Step 2: Configure the Card ID using the DIP-Switch (SW1).

For detailed information about the card ID, refer to Section 2.2.2 Card ID Switch.

Step 3: Shut down and switch off the power to the computer, and then disconnect the power supply.

Step 5: Select an empty PCI slot.

Step 8: Carefully insert the PCI-2602U card into the PC slot by gently pushing down on both sides of the card until it slides into the PCI connector.

PCI-2602U Multi-Function Boards

Step 9: Confirm that the card is correctly inserted in the motherboard, and then secure the PCI-2602U card in place using the retaining screw that was removed in Step 6.

Step 10: Replace the covers on the computer.

Step 11: Re-attach any cables, insert the power cord and the switch one the power to the computer.

Once the computer reboots, follow any message prompts that may be displayed to complete the Plug and Play installation procedure, refer to <u>Chapter 5 Software Installation.</u>

5. Software Installation

This chapter provides a detailed description of the process for installing the PCI-2602U driver and how to verify whether the PCI-2602U was properly installed. PCI-2602U card can be used on Windows 2000 and 32-/64-bit XP/2003/2008/Vista/7/8 based systems, and the drivers are fully Plug and Play compliant for easy installation.

5.1 Obtaining/Installing the Driver Installer Package

The driver installer package for the PCI-2602U card can be found on the supplied CD-ROM, or can be obtained from the ICP DAS FTP web site. Install the appropriate driver for your operating system. The location and addresses are indicated in the Table5.1-1 below.

Operating System	Windows 2000, 32/64-bit Windows XP, 32/64-bit Windows 2003, 32/64-bit Windows 2008, 32/64-bit Windows Vista, 32/64-bit Windows 7, 32/64-bit Windows 2008, 32/64-bit Windows 8
Driver Name	UniDAQ Driver/SDK (unidaq_win_setup_xxxx.exe)
CD-ROM	CD:\\ NAPDOS\PCI\UniDAQ\DLL\Driver\
Web site	http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/dll/driver/
	Please follow the following steps to setup software:
	Step 1: Double click the UniDAQ_Win_Steupxxx.exe to setup it.
Installation Procedure	Step 2: When the Setup Wizard screen is displayed, click the <u>N</u> ext> button.
	Step 3: When the Information screen is displayed, click the <u>Next></u> button.

Table 5.1-1: UniDAQ Driver/SDK

	Step 4: Select the folder where the drivers are to install. The default path is C:\ICPDAS\UniDAQ . But if you wish to install the drivers to a different location , click the "Browse" button and select the relevant folder and then click the <u>Mext></u> button.
	Step 5: When the Select Components screen is displayed, check PCI-2602U board on the list, then click the <u>N</u> ext> button.
	Step 6: When the Select Additional Tasks screen is displayed, click the <u>N</u> ext> button.
Installation Procedure	Step 7: When the Download Information screen is displayed, click the <u>N</u> ext> button.
	Step 8: Select the item "Yes, restart the computer now" , press the <u>F</u> inish button. System will reboot.
	For more detailed information about how to install the UniDAQ driver, refer to "Section 2.2 Install UniDAQ Driver DLL" of the UniDAQ Software Manual, which can be found in the \NAPDOS\PCI\UniDAQ\Manual\ folder on the companion CD, or can be downloaded from: http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/manual/

5.2 PnP Driver Installation

Step 1: Correctly shut down and power off your computer and disconnect the power supply, and then install the PCI-2602U into the computer.

4. Hardwar	re Installation
I Note:	
It is recommended that may need to be restarts	the driver is installed before installing the hardware as the comput ed once the driver is installed in certain operating systems, such i
Windows 2000 or Windo	ws XP, etc. Installing the driver first helps reduce the time required (
instanation and restartin	g the computer.
To install PCI-2602U board	i, follow the procedure described below:
Step 1: Install the drive	r for the PCI-2602U card on your computer.
step 1: install the drive	r tor the PCP-20020 card on your computer.

For detailed information about the hardware installation of the PCI-2602U, refer to <u>Chapter 4 Hardware Installation</u>.

Step 2: Power on the computer and complete the Plug and Play installation.

Note: More recent operating systems, such as Windows Vista/7/8 will automatically detect the new hardware and install the necessary drivers etc., so Steps 3 to 5 can be skipped.

Step 3: Select "Install the software automatically [Recommended]" and click the "Next>" button.

Found New Hardware Wiz	ard
	Welcome to the Found New Hardware Wizard
	This wizard helps you install software for:
	[UniDAQ]PCI-2602U Multi-function Board
	If your hardware came with an installation CD or floppy disk, insert it now.
	What do you want the wizard to do?
	Install the software automatically [Recommended] Install from a list or specific location (Advanced)
	Click Next to continue.
	< Back Next > Cancel

Step 4: Click the "Finish" button.

Step 5: Windows pops up "Found New Hardware" dialog box again.

5.3 Verifying the Installation

To verify that the driver was correctly installed, use the Windows **Device Manager** to view and update the device drivers installed on the computer, and to ensure that the hardware is operating correctly. The following is a description of how access the Device Manager in each of the major versions of Windows. Refer to the appropriate description for your the operating system to verify the installation.

5.3.1 Accessing Windows Device Manager

Windows 2000/XP

- Step 1:Click the "Start" button and then point to "Settings" and click "Control Panel".Double-click the "System" icon to open the "System Properties" dialog box.
- Step 2: Click the "Hardware" tab and then click the "<u>Device</u> Manager" button.

Windows Server 2003/2008

Step 1: Click the **"Start"** button and point to **"Administrative Tools"**, and then click **"Computer Management"** option.

Step 2: Expand the "System Tools" item in the console tree, and then click "Device Manager".

Administrator		
Manage Your Server	😏 My Computer	
Command Prompt	📴 Control Panel 🔹 🕨	
C	🍿 Administrative Tools 🔹 🕨	Certification Authority
Windows Explorer	Ninters and Faxes	 Cluster Administrator Component Services
Notenad	Help and Support	🖳 Computer Management
Jan Hotopus	Help and Support	Configure Your Server Wizard
	Search	同 Data Sources (ODBC) local apr

Windows Vista/7

Step 1: Click "Start" button.

Step 2: In the Search field, type Device Manager and the press Enter.

Control Panel (3)	
📇 Device Manager	
ka View devices and printers	
📇 Update device drivers	
O See more results	
device manager ×	Shut down 🕨
	🦻 🙆 🏒

Note that Administrator privileges are required for this operation. If you are prompted for an administrator password or confirmation, enter the password or provide confirmation by clicking the "Yes" button in the User Account Control message.

Windows 8

Step 1: To display the Start screen icon from the desktop view, hover the mouse cursor over the bottom-left corner of screen.
Step 2: Right-click the Start screen icon and then click "Device Manager".

Alternatively,

press [Windows Key] +[X] to open the Start Menu, and than select Device Manager from the options list.

5.3.2 Check the Installation

Check the PCI-2602U card which listed correctly or not, as illustrated below.

6. Testing the PCI-2602U Board

This chapter provides detailed information about the "Self-Test" process, which is used to confirm that PCI-2602U board operating correctly. Before beginning the "Self-Test" process, ensure that both the hardware and driver installation procedures are fully completed. For detailed information about the hardware and driver installation, refer to <u>Chapter 4 Hardware Installation</u> and <u>Chapter 5 Software Installation</u>.

6.1 Self-Test Wiring

Preparing the device:

Before beginning the "Self-Test" procedure, ensure that the following items are available:

☑ A CA-SCSI15-H (optional) cable

A DN-68A (optional) terminal board

Step 1: Connect the DN-68A to the CON1 connector on the board using the CA-SCSI15-H cable.

Analog Input/Output Test Wiring:

Step 2: Open the advanced configuration tool in the Windows Device Manager to configuration the Analog Input type for **Single-Ended input**, refer to <u>section 2.2.3 Analog Input Type Setting</u> for more detail information.

Step 3: Connect the AO0_Out (Pin58) to AI0 (Pin68), and connect the AI_GND (Pin60) to AO_GND (Pin57).

6.2 Execute the Test Program

After installation, the UniDAQ Utility will be located in the default folder (C:\ICPDAS\UniDAQ\Driver\). Use the procedure described below to perform the "Self-Test".

Step 1: In Windows XP, click the "Start" button, point to "All Programs" and then click the "ICPDAS" folder.Point to "UniDAQ Development Kits" and then click "UniDAQ Utility".

Step 2: Confirm that the PCI-2602U board has been successfully installed in the Host system. Note that device numbers start from 0.

Step 3: Click the "<u>T</u>EST" button to start the test.

Step 4: Check the results of the Analog Input/Output functions test result.

- 1. Click the "Analog Output" tab.
- 2. Select the **"0"** from the **"Channel"** drop-down menu.
- 3. Select the **"1: Bipolar +/- 5V"** from the **"Range"** drop-down menu.
- Enter the voltage value depending on your requirements (e.g. 4) in the "Voltage(V)" field.
- 5. Click the **"OUTPUT"** button to output voltage.

🎏 0 PCI-260	2 (CARD ID:	0			
Analog Input	Analog <u>O</u> utpu	Digital Input	Digital Outpu	₄t 	nter Debug
Voltage C Chanr Current C Chanr 0	Dutput nel II:B Dutput nel II:B	Range 3 ipolar +/- 5 Range Select	Volt V V 4 Curre V 2.5	age(V)	
					<u>e</u> xit

- 6. Click the **"Analog Input"** tab.
- 7. Confirm the configuration setting.
- 8. Click the "<u>Start</u>" button.
- 9. Check **Analog Input on Channel 0 textbox**. The other channels value for floating number.

4- 01	CI-2602 (CARD II	:F)						
Analo	g Input Analog Outp	ut Digital Input I	Digital Output Tim	ner/ <u>C</u> ounter	Debug			
Ch	Voltage(V) Ch	Voltage(V)						
	3.99918	3.99012						
1	4.11201 9	4.12983						
2	3.9076 10	3.93386						2
3	4.07857 11	4.1142				er/Coupter		
4	3.94605 12	3.98637				on <u>c</u> ounter	Debug	
5	4.10326 13	4.13014						
6	4.062 14	4.03012						
7	4.18703 15	4.12108						
_ 0	ing							
	a- Inorpibolat +/-							
				<u> </u>	Т		8	
		Card Type 0: Range 00:B	Low(JPx=20V) Ga ipolar +/- 10V	ain 💽 Sample	Rate 100	HEX ĴHz	<u>S</u> tart	
		L						
		<u></u>		0			<u>e</u> xit	J

7. I/O Register Addresses

7.1. Determining the I/O Address using DOS

The Plug&Play BIOS will assign an appropriate I/O address for each installed PCI-2602U board during the power-on stage. Each card includes four fixed ID numbers which are indicated below:

Model Name	PCI-2602U
Vendor ID	0x10B5
Device ID	0x9054
Sub Vendor ID	0x3577
Sub Device ID	0x2602

The following functions are provided:

1. P2602_DriverInit(&wTotalBoards)

This function can be used to detect how many PCI-2602U cards are installed in the system, and is implemented based on the PCI Plug & Play mechanism. The function also records the I/O resources information for each card and stores the details in the library.

Usage examples:

- wTotalBoards =1 \rightarrow There is only one PCI-2602U board installed in this system.
- wTotalBoards =2 \rightarrow There are two PCI-2602U boards installed in this system.
- 2. P2602_GetConfigAddressSpace(wBoardNo, *wBaseAddr, *wIrqNo, *wBasePLX, *dwBaseAddr)

This function is used to read the I/O resource information for a PCI-2602U board installed in the system. The application will then be able to directly control all of the functions related to the PCI-2602U board.

- wBoardNo=0 to N : There are a total N+1 PCI-2602U boards of wBaseAddr
- wBaseAddr, wBasePLX, dwBaseAddr : The base address of the PCI-2602U board
- wirq : the IRQ channel number allocated to this PCI-2602U board

The following is a sample of the source code for use with DOS:

// Step1: Detect all PCI-2602U cards first wRetVal=P2602_DriverInit(&wTotalBoards); printf("There are %d PCI-2602U Cards in this PC\n",wBoards); // Step2: Save resource of all PCI-2602U cards installed in this PC for (wBoardNo=0; i<wBoards; i++)</pre> P2602_GetConfigAddressSpace(i, &wBaseAddr[wBoardNo], &wIrqNo[wBoardNo], &wBasePLX[wBoardNo], &dwBaseAddr[wBoardNo],); printf("\nCard%d: wBase=%x, wIrq=%x, wBasePLX=%x,dwBaseAddr = %lx", , wBoardNo[wBoardNo] ,wBaseAddr[wBoardNo] ,wIrqNo[wBoardNo] ,wBasePLX[wBoardNo] ,dwBaseAddr[wBoardNo]); } // Step3: Control the PCI-2602U directly // write the DIO states of card0 mem4g_write_dword(dwBaseAddr[0] +0x214,dwDoValue); // read the DIO states of card0 dwDiValue= mem4g_read_dword(dwBaseAddr[0] +0x214); // write the DIO states of card1 mem4g_write_dword(dwBaseAddr[1] +0x214,wDoValue); // read the DIO states of card1 wDiValue= mem4g_read_dword(wBaseDIO+0x0);

7.2. The I/O Address Map

An overview of the registers for the PCI-2602U board is given below. The address of each register can be determined by simply adding the offset value to the base address of the corresponding Bar number. More detailed descriptions of each register can be found in the following.

		Register Function Description		
Bar No.	Unset	Read	Write	
	68H	PLX Interrupt Control/Status	PLX Interrupt Control/Status	
1	80H			
(PLX)	 B8H	DMA Control/Status	DMA Control/Status	
	200H	Initialize Control/Status	Hardware Status	
	204H	Interrupt Control/Status	Interrupt Control/Status	
	208H	EEPROM Control/Status	EEPROM Control/Status	
	20CH	EEPROM Control/Status	EEPROM Control/Status	
	210H	DIO Mode Control/Status	DIO Mode Control/Status	
	214H	Read DIO Port	Write DIO Port	
	218H	Read DI FIFO Data	N/A	
	21CH	DI FIFO Status	N/A	
	220H	DO Pattern Output Control/Status	DO Pattern Output Control/Status	
2	22CH	AI Scan Mode Control/Status	AI Scan Mode Control/Status	
3	230H	Time Tick Status(ms)	N/A	
	234H	Time Tick Status(us)	N/A	
	238H	CNT0 Clock Control/Status	CNT0 Clock Control/Status	
	23CH	Delay Trigger Clock Control/Status	Delay Trigger Clock Control/Status	
	240H	DI Filter Clock Control/Status	DI Filter Clock Control/Status	
	244H	AI Internal Clock Control/Status	AI Internal Clock Control/Status	
	248H	DI Internal Clock Control/Status	DI Internal Clock Control/Status	
	24CH	DO Internal Clock Control/Status	DO Internal Clock Control/Status	
	250H	AO0 Internal Clock Control/Status	AO0 Internal Clock Control/Status	
	254H	AO1 Interrupt Clock Control/Status	AO1 Interrupt Clock Control/Status	
	258H	Internal Clock Control	N/A	

DerNe	Offeet	Register Function Description		
bar NO.	Unset	Read	Write	
	280H	AI External Analog Trigger Control/Status	AI External Analog Trigger Control/Status	
	290H	AI Trigger Mode Control/Status	AI Trigger Mode Control/Status	
	294H	AI Software Trigger Status	AI Software Trigger Control	
	298H	AI Scan Address	AI Scan Address	
	2ECH	AI Configuration Control/Status	AI Configuration Control/Status	
	2F0H	Save AI Configuration	N/A	
2	2A0H	Read AI FIFO Data	N/A	
3	2A4H	AI FIFO Status	N/A	
	2A8H	AI Data Acquisition Size	AI Data Acquisition Size	
	2ACH	AI Data Acquisition Start	AI Data Acquisition Start	
	2B0H	AO Configuration Control/Status	AO Configuration Control/Status	
	2B4H	Write AO Channel 0 Data	Write AO Channel 0 Data	
	2B8H	Write AO Channel 1 Data	Write AO Channel 1 Data	
	2BCH	AO Pattern Output Control/Status	AO Pattern Output Control/Status	
	2C4H	Connector I/O Control/Status	Connector I/O Control/Status	

Note: The length of the register is **32-bits**.

7.3. Bar 1 (PLX)

7.3.1 PLX Control/Status Registers

■ (Read/Write)wBase+0x68 Read/Write interrupt Control/Status

For more detailed information, refer to the documentation for the PLX9054, which can be found at: <u>http://www.plxtech.com/products/io/pci9054#technicaldocumentation</u>

(Write)wBase+0x80 ~ 0xB8 Read/Write DMA Control/Status

For more detailed information, refer to the documentation for the PLX9054, which can be found at:

http://www.plxtech.com/products/io/pci9054#technicaldocumentation

7.4. Bar 3 (MMIO)

7.4.1 Interrupt and Initialize Control/Status Registers

Register 7.4.1-1wBase+0x200 Initialize Control/Status

Bit	Description	Write
0	Reset AI Mode. Write a 1 and Write a 0 to resets AI Mode.	Yes
1	Clear AI FIFO. Write a 1 and Write a 0 to clear AI FIFO.	Yes
2	Reset AI FIFO Overflow Status. Write a 1 and Write a 0 to resets AI FIFO over flow status.	Yes
3	PCI Clear Interrupt. Write a 1 and Write a 0 to clear PCI interrupts.	Yes
4:5	Reserved.	Yes
6	DI(PC) FIFO Reset. Write a 1 and Write a 0 to resets digital input FIFO.	Yes
7	DO(PA) FIFO Reset. Write a 1 and Write a 0 to resets digital output FIFO.	Yes
8	AO0 FIFO Reset. Write a 1 and Write a 0 to resets analog output channel 0 FIFO.	Yes
9:31	Reserved.	No

Register 7.4.1-2 wBase+0x200 Hardware Status

Bit	Description	Read
0:3	Card ID. Reading a data indicates a Card ID of SW1.	Yes
4:7	Reserved.	Yes
8	PA DIO Mode. Reading a 1 indicates a PA is DO mode. Reading a 0 indicates a PA is DI mode.	Yes
9	PB DIO Mode. Reading a 1 indicates a PB is DO mode. Reading a 0 indicates a PB is DI mode.	Yes
10	PC DIO Mode. Reading a 1 indicates a PC is DO mode. Reading a 0 indicates a PC is DI mode.	Yes
11	PD DIO Mode. Reading a 1 indicates a PD is DO mode. Reading a 0 indicates a PD is DI mode.	Yes
12:31	Reserved.	Yes

Register 7.4.1-3 wBase+0x204 Interrupt Clear/Status

Bit	Description	Read	Write
	Al Pacer Done Int. Reading a 1 indicates an analog input pacer is		
0	complete. Reading a 0 indicates a pacer is not complete. Write a 1 and	Yes	Yes
	write a 0 to clear Al Pacer Down interrupt.		
	AI FIFO Half-Full Int. Reading a 1 indicates an analog input FIFO status		
1	is half-full. Reading a 0 indicates an analog input FIFO status is not	Yes	Yes
	half-full. Write a 1 and write a 0 to clear AI FIFO Half-Full interrupt.		
	AI FIFO Full Int. Reading a 1 indicates an analog input FIFO status is		
2	full. Reading a 0 indicates an analog input FIFO status is not full. Write	Yes	Yes
	a 1 and write a 0 to clear AI FIFO FULL interrupt.		
	DI Pacer Done Int. Reading a 1 indicates a digital input pacer is		
3	complete. Reading a 0 indicates a digital pacer is not complete. Write a	Yes	Yes
	1 and write a 0 to clear DI Pacer Down interrupt.		
	DI(PC) FIFO Half-Full Int. Reading a 1 indicates a digital input FIFO		
4	status is half-full. Reading a 0 indicates a digital input FIFO status is not	Yes	Yes
	half-full. Write a 1 and write a 0 to clear DI FIFO Half-Full interrupt.		
	DI(PC) FIFO Full Int. Reading a 1 indicates a digital input FIFO status is		
5	full. Reading a 0 indicates a digital input FIFO status is not full. Write a	Yes	Yes
	1 and write a 0 to clear DI FIFO FULL interrupt.		
	AO0 Pattern Done Int. Reading a 1 indicates a AO0 Pattern output is		
6	complete. Reading a 0 indicates a AO0 Pattern output is not complete.	Yes	Yes
	Write a 1 and write a 0 to clear AO0 Pattern Done interrupt.		
	DO(PA) Pattern Done Int. Reading a 1 indicates a DO(PA) Pattern		
7	output is complete. Reading a 0 indicates a PA Pattern output is not	Yes	Yes
	complete. Write a 1 and write a 0 to clear PA Pattern Done interrupt.		
	External Trigger Int. Reading a 1 indicates an external trigger status is		
8	ready. Reading a 0 indicates an external trigger status is not ready.	Yes	Yes
	Write a 1 and write a 0 to clear external trigger interrupt.		
9	SYNC_I Trigger Int.	Yes	Yes
	Analog Trigger Int. Reading a 1 indicates an analog trigger status is		
10	ready. Reading a 0 indicates an analog trigger status is not ready. Write	Yes	Yes
	a 1 and write a 0 to clear analog trigger interrupt.		
	Counter Int. Reading a 1 indicates an Counter Interrupt status is ready.		
11	Reading a 0 indicates an analog trigger status is not ready. Write a 1	Yes	Yes
	and write a 0 to clear analog trigger interrupt.		
12:31	Reserved.	Yes	No

Bit	Description	Read	Write
0	Enable AI Pacer Done Interrupt. Write a 1 enables interrupt when	Voc	Voc
0	analog input pacer is done.	ies	res
1	Enable AI FIFO Half-Full Interrupt. Write a 1 enables interrupt when	Voc	Voc
L	analog input FIFO is half-full.	ies	res
2	Enable AI FIFO Full Interrupt. Write a 1 enables interrupt when analog	Voc	Voc
Z	input FIFO is full.	res	res
2	Enable DI(PC) Pacer Done Interrupt. Write a 1 enables digital input	Vee	Vee
3	interrupt when pacer done.	res	Yes
4	Enable DI(PC) FIFO Half-Full Interrupt. Write a 1 enables digital input	Vee	No. a
4	FIFO half-full interrupt.	res	Yes
F	Enable DI(PC) FIFO Full Interrupt. Write a 1 enables digital input FIFO	Vee	No. a
5	full interrupt.	res	Yes
C C	Enable AO0 Pattern Done Interrupt. Write a 1 enables AO0 pattern		Mara
6	down interrupt.	Yes	Yes
_	Enable DO(PA) Pattern Done Interrupt. Write a 1 enables PA pattern		
/	down interrupt.	Yes	Yes
	Enable External Trigger Interrupt. Write a 1 enables external trigger		
8	interrupt.	Yes	Yes
9	Enable SYNC_I Trigger Interrupt.	Yes	Yes
10	Enable Analog Trigger Interrupt. Write a 1 enables analog trigger		
	interrupt.	Yes	Yes
11	Enable Timer Interrupt.	Yes	Yes
12:31	Reserved.	Yes	No

Register 7.4.1-4 wBase+0x224 Interrupt Mode Control/Status

7.4.2 Digital I/O Registers

Register 7.4.2-1 wBase+0x210 DIO Mode Control/Status

Bit	Description	Read	Write
0	PA DIO Mode. Write a 1 indicates a PA is DO mode. Write a 0 indicates a PA is DI mode.	Yes	Yes
1	PB DIO Mode. Write a 1 indicates a PB is DO mode. Write a 0 indicates a PB is DI mode.	Yes	Yes
2	PC DIO Mode. Write a 1 indicates a PC is DO mode. Write a 0 indicates a PC is DI mode.	Yes	Yes
3	PD DIO Mode. Write a 1 indicates a PD is DO mode. Write a 0 indicates a PD is DI mode.	Yes	Yes
4	Enable PA Digital Input Filter. Write a 1 enables digital input filter.	Yes	Yes
5	Enable PB Digital Input Filter. Write a 1 enables digital input filter.	Yes	Yes
6	Enable PC Digital Input Filter. Write a 1 enables digital input filter.	Yes	Yes
7	Enable PD Digital Input Filter. Write a 1 enables digital input filter.	Yes	Yes
8:10	DI Clk Select. Write a 100 enables digital output clock.	Yes	Yes
11:13	DO Clk Select. Write a 101 enables digital output clock.	Yes	Yes
14	PA Output Mode. Writing a 1 indicates the PA output mode is pattern mode. Writing a 0 indicates the PA output mode is static mode.	Yes	Yes
15:31	Reserved.	Yes	No

Register 7.4.2-2 wBase+0x214 Write DIO Port

Bit	Description	Read	Write
0:7	PA Write. Write the digital output data to specified digital I/O Port-PA,	Yes	Yes
	When PA is digital output mode.		
8 ∙15	PB Write. Write the digital output data to specified digital I/O Port-PB,	Voc	Yes
8.15	When PB is digital output mode.	ies	
16:23	PC Write. Write the digital output data to specified digital I/O Port-PC,	Vac	Voc
	When PC is digital output mode.	res	ies
24:31	PD Write. Write the digital output data to specified digital I/O Port-PD,	Vac	Voc
	When PD is digital output mode.	res	res

Register 7.4.2-3 wBase+0x214 Read DIO Port

Bit	Description	Read
0:7	PA Read. Read the digital input data to specified digital I/O Port-PA, When PA is digital input mode.	Yes
8:15	PB Read. Read the digital input data to specified digital I/O Port-PB, When PB is digital input mode.	Yes
16:23	PC Read. Read the digital input data to specified digital I/O Port-PC, When PC is digital input mode.	Yes
24:31	PD Read. Read the digital input data to specified digital I/O Port-PD, When PD is digital input mode.	Yes

Register 7.4.2-4 wBase+0x218 Read DI FIFO Data

Bit	Description	Read
0:7	FIFO Read. Read the digital input data to specified FIFO.	Yes
8:31	Reserved.	Yes

Register 7.4.2-5 wBase+0x21C **DI FIFO Status**

Bit	Description	Read
0:15	Reserved.	Yes
16	FIFO Empty. Reading a 1 indicates a FIFO status is empty.	Yes
17	FIFO Full. Reading a 1 indicates a FIFO status is full.	Yes
18	FIFO Half Full. Reading a 1 indicates a FIFO status is half-full.	Yes
19	FIFO Almost Full. Reading a 1 indicates a FIFO status is almost full.	Yes
20	FIFO Almost Empty. Reading a 1 indicates a FIFO status is almost empty.	Yes
21	FIFO Overflow. Reading a 1 indicates a FIFO status is overflow.	Yes
22:31	Reserved.	Yes

Register 7.4.2-6 wBase+0x220 **DO Pattern Control/Status**

Bit	Description	Read	Write
0:10	DO(PA) Data Num. Write value indicates the waveform points for PA.	Yes	Yes
	DO(PA) Cycle Num. Write 0~30 indicates the PA is burst mode, the		
11:15	write n indicates to generate n+1 pulse. Write 31 indicates the PA	Yes	Yes
	output mode is continuous mode.		
16:31	Reserved	Yes	No

7.4.3 Analog Input Registers

Register 7.4.3-1 wBase+0x22C AI Scan Mode Control/Status

Bit	Description	Read	Write
0	Enable AI Scan. Writing a 1 enables MagicScan Mode to scan analog input channel.	Yes	Yes
1:16	Total Scan Channel Number. Indicates the number of channels to MagicScan. Writing a N indicates an N+1 channels. Ex. Writing a 14 indicates 15 channels. Writing an 8 indicates 9 channels.	Yes	Yes
17:31	Reserved.	Yes	No

Register 7.4.3-2 wBase+0x244 AI Internal Clock Control/Status

Bit	Description	Read	Write
0:23	Set Div Clock. Indicates the (WORD)((Base Clock/Sampling Rate)-1) to set	Voc	Voc
	internal pacer clock during an analog input operation.	ies	162
24:25	Select Base Clock. Writing 00 indicates 40MHz. Writing 01 indicates 10M.	Vee Vee	Voc
	Writing 10 indicates 1MHz. Writing 11 indicates 100KHz.	ies	ies
26:31	Reserved.	Yes	No

Register 7.4.3-3 wBase+0x290 AI Trigger Mode Control/Status

Bit	Description	Read	Write
	Clock Source. Writing 000 indicates a non-clock source. Writing 001		
0:2	indicates a Single Clk. Writing 010 indicates a T3 Clk. Writing 101	Yes	Yes
	indicates an external clock source.		
3.1	Trigger Source. Writing 00 indicates an external trigger. Writing 01	Vos	Voc
5.4	indicates an Sync_I.	163	163
	Trigger Mode. Writing 000 indicates an internal trigger mode. Writing		
	001 indicates a post-trigger mode. Writing 010 indicates a		
5:7	middle-trigger mode. Writing 011 indicates a pre-trigger mode. Writing	Yes	Yes
	100 indicates a delay-trigger mode. Writing 101 indicates a		
	analog-trigger mode.		
0	Enable Analog Trigger. Writing a 1 enables analog trigger mode to	Ves Ve	Vac
ŏ	acquire the analog data when an external analog signal start.	res	res
	Analog Trigger Type. Writing 000 disable analog trigger mode. Writing		
9:11	001 enable a above-high. Writing 010 enable a below-low. Writing 011	Vee	Vaa
	enable inside-region (V2 <ad<v1). 100="" an<="" enable="" td="" writing=""><td>Yes</td><td>res</td></ad<v1).>	Yes	res
	outside-region (AD>V1, AD <v2).< td=""><td></td><td></td></v2).<>		
12:31	Reserved.	Yes	No

Register 7.4.3-4 wBase+0x294 AI Software Trigger Control

Bit	Description	Read	Write
0	Software Trigger Start. Writing a 0 causes the analog input channel to measure analog input data.	No	Yes
1:31	Reserved.	Yes	No

Register 7.4.3-5 wBase+0x294 AI Software Trigger Status

Bit	Description	Read	Write
0:15	Software Trigger Data Read. Read the analog input data.	Yes	No
16	Trigger Status. Reading a 1 indicates a Trigger Status is ready. Reading a	Ves	No
	0 indicates a Trigger Status is busy.	103	NO
17:31	Reserved.	Yes	No

Register 7.4.3-6 wBase+0x298 AI Scan Address

Bit	Description	Read	Write
0:15	AI Scan Address Register. Indicates the scan sequence number during a MagicScan operation.	No	Yes
16:31	Reserved.	Yes	No

Register 7.4.3-7 wBase+0x2EC AI Configuration Control/Status

Bit	Description	Read	Write
0	1	Yes	Yes
1	0	Yes	Yes
2	1	Yes	Yes
3	1	Yes	Yes
4	0	Yes	Yes
5	0	Yes	Yes
6	1	Yes	Yes
7:9	Analog Input Range (Gain).	Yes	Yes
10	1	Yes	Yes
11	Analog Input Type. Writing a 1 indicates a signal-ended type. Writing a 0 indicates a differential type.	Yes	Yes
12	Channel Select 0. Writing a 1 indicates an odd channel. Writing a 0 indicates an even channel.	Yes	Yes
13	Reserved.	Yes	No
14	Reserved.	Yes	No
15	1	Yes	Yes
16:18	Channel Select 1. Indicates value to use analog input channel number div 2.	No	Yes
19:31	Reserved.	Yes	No

Register 7.4.3-8 wBase+0x2F0 Save AI Configuration Data

Bit	Description	Read	Write
0	Save AI Configuration Data. Writing a 0 indicates to save configuration data.	Yes	Yes
1:31	Reserved.	Yes	No

Register 7.4.3-9 wBase+0x2A0 Read AI FIFO Data

Bit	Description	Read
0:15	FIFO Read. Read the analog input data to specified FIFO.	Yes
16:31	Reserved.	Yes

Register 7.4.3-10 wBase+0x2A4 AI FIFO and Trigger Status

Bit	Description	Read
0:15	Reserved.	Yes
16	FIFO Empty. Reading a 1 indicates a FIFO status is empty.	Yes
17	FIFO Full. Reading a 1 indicates a FIFO status is full.	Yes
18	FIFO Half Full. Reading a 1 indicates a FIFO status is half-full.	Yes
19	FIFO Almost Full. Reading a 1 indicates a FIFO status is almost full.	Yes
20	FIFO Almost Empty. Reading a 1 indicates a FIFO status is almost empty.	Yes
21	FIFO Overflow. Reading a 1 indicates a FIFO status is overflow.	Yes
22	Trigger In.	Yes
23	Post Trigger.	Yes
24	Analog Trigger Ready	Yes
25	Analog Trigger V1A5	Yes
26	Analog Trigger V2A5	Yes
27	Analog Trigger Fit	Yes
28:31	Reserved.	Yes

Register 7.4.3-11 wBase+0x2A8 AI Data Acquisition Size

Bit	Description	Read	Write
0:31	Data Acquisition Size. Indicates the number to acquire data during an analog input operation. Writing an 8000000 acquires analog input data continuous.	Yes	Yes

Register 7.4.3-12 wBase+0x2AC AI Data Acquisition Start

Bit	Description	Read	Write
0:31	Acquisition Start. Writing a 0 to causes channel to start acquisition data	Vec	Yes
	if AI Data Acquisition Size register is set.	res	

7.4.4 Analog output registers

Register 7.4.4-1 wBase+0x2B0 AO Configuration Control/Status

Bit	Description	Read	Write
0	Channel 0 Enable. Writing a 1 enables channel to output data. Writing a 0 disables the channel.	Yes	Yes
1	Channel 0 Polar. Writing a 1 indicates the channel 0 polar is uni-polar. Writing a 0 indicates the channel 0 polar is Bi-polar.		Yes
2	Channel 0 Internal Ref. Writing a 1 indicates the channel 0 internal reference is 5V.Writing a 0 indicates the channel 0 internal reference is 10V.	Yes	Yes
3	Channel 0 Reference Mode. Writing a 1 indicates the channel 0 is internal reference. Writing a 0 indicates the channel 0 is external reference.	Yes	Yes
4	Channel 1 Enable. Writing a 1 enables channel to output data. Writing a 0 disables the channel.	Yes	Yes
5	Channel 1 Polar. Writing a 1 indicates the channel 1 polar is uni-polar. Writing a 0 indicates the channel 1 polar is Bi-polar.	Yes	Yes
6	Channel 1 Internal Ref. Writing a 1 indicates the channel 1 internal reference is 5V.Writing a 0 indicates the channel 1 internal reference is 10V.	Yes	Yes
7	Channel 1 Reference Mode. Writing a 1 indicates the channel 1 is internal reference. Writing a 0 indicates the channel 1 is external reference.	Yes	Yes
8	Channel 0 Output Mode. Writing a 1 indicates the channel 0 output mode is pattern mode. Writing a 0 indicates the channel 0 output mode is static mode.	Yes	Yes
9	Channel 1 Output Mode. Writing a 1 indicates the channel 1 output mode is pattern mode. Writing a 0 indicates the channel 1 output mode is static mode.	Yes	Yes
10:12	Channel 0 Clk Select. Write a 110 enables analog output channel 0 clock.	Yes	Yes
13:15	Channel 1 Clk Select. Write a 111 enables analog output channel 1 clock.	Yes	Yes
16:31	Reserved.	Yes	No

Register 7.4.4-2 wBase+0x2B4 Write AO Channel 0 Data

Bit	Description	Read	Write
0:15	AO Channel 0 Write. Writing the analog output data to channel 0.	Yes	Yes
16:31	Reserved.	Yes	Yes

Register 7.4.4-3 wBase+0x2B8 Write AO Channel 1 Data

Bit	Description	Read	Write
0:15	AO Channel 1 Write. Read the analog output data to channel 1.	Yes	Yes
16:31	Reserved.	Yes	Yes

Register 7.4.4-4 wBase+0x2BC AO Pattern Output Control/Status

Bit	Description	Read	Write
0:10	AO Channel 0 Data Num. Write value indicates the waveform points for channel 0.	Yes	Yes
11:15	AO Channel 0 Cycle Num. Write 0~30 indicates the channel 0 is burst mode, the write n indicates to generate n+1 pulse. Write 31 indicates the channel 0 output mode is continuous mode.	Yes	Yes
16:31	Reserved	Yes	No

8. Calibration

8.1. Introduction

When shipped from the factory, the PCI-2602U board is already fully calibrated, including the calibration coefficients that are stored in the onboard EEPROM. For a more precise application of voltages in the field, the procedure described below provides a method that allows the board installed in a specific system to be calibrated so that the correct voltages can be achieved for the field connection. This calibration allows the effects of voltage drops caused by IR loss in the cable and/or the connector to be eliminated.

At first the user has to prepare the equipment for calibration: the precise multi-meter. Note that the calibrated values for analog output/input channels are stored within 3 words in the address of the EEPROM, as shown in the table below. The calibration procedure will be described in detail in the <u>Section 8.2</u>.

The calibration values stored in the EEPROM are as follows:

EEPROM Address	Reference Calibration
10V	4:5
5V	6:7

	ddrocc	DA Calibration	
EEPROIVI Address		CH 0	CH 1
Dipolar	+5V	8	16
ыротат	+0V	9	17
Hipolar	+10V	10	18
Olpolai	+0V	11	19
Dipolar	+5V	12	20
ыротаг	-5V	13	21
Uninolar	+10V	14	22
Unipolar	-10V	15	23

	Addross	AD Calibration	
EEPROINI Address		AD CH0	
Bipolar	10V Ref	24	
10.24V	0V	25	
Bipolar	5V Ref	28	
5.12V	0V	29	
Bipolar	2.54V	32	
2.56V	0V	33	
Bipolar	1.27V	36	
1.28V	0V	37	
Bipolar	0.63V	40	
0.64V	0V	41	
Bipolar	10V Ref	48	
20.48	0V	49	

8.2. Step-by-Step Calibration Process

The following is a step-by-step description of the calibration process using the Windows Calibration Program for the PCI-2602U, which can be downloaded form: http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pci-2602/dll/calibration/

9. PCI-2602U Windows API Function

For more details regarding the Windows API Functions for the PCI-2602U board, refer to UniDAQ SDK User manual, which can be downloaded from:

Appendix: Daughter Boards

A1. DN-68A

The DN-68A is a general-purpose DIN-Rail mountable daughter board containing female 68 pin D-sub I/O Connectors and is designed to allow easy field wiring connections.

Pins 01 to 68 on the DN-68A daughter board are connected to the CON1 connector on the PCI-2602U using a 68-pin male-male cable.

The FG on the DN-68A is connected to the shielding wire of the 68-pin cable.