3-1 High Speed Multifunction Board

NEW

PCI-2602U

Universal PCI , 1 MS/s High-speed, 16-channel Analog Input, 2-channel Analog Output and 32-channel DI/O Multifunction Board

Features **>>>**

- Universal PCI (3.3 V/5 V) Interface, Plug & Play
- Supports Card ID (SMD Switch)
- 2-channel 16-bit Voltage Output
- 512-sample Hardware FIFO for Analog Pattern Generator
 32-channel Programmable DI/DO
 - □ Supports DO Status Readback (Register Level)
 - □ 512-sample Hardware FIFO for Digital Pattern Generator
- Digital Input Filter Function

Introduction

The PCI-2602U is a high-performance multifunction card that provides Analog and Digital I/O functions for high-speed data transfer, analog signal measurement, I/O control and pattern generation applications, etc. The card features a continuous, 1 MS/s 16-bit resolution AD converter, an 8 K-sample hardware FIFO, a 2-channel 16-bit DA converter, and 32-channel programmable Digital I/O with Digital Output readback. The PCI-2602U provides either 16-channel single-ended or 8-channel differential Analog Input, which is selectable via software, and is equipped with a high speed PGA featuring programmable gain.

In addition, the PCI-2602U card also provides the following advantages:

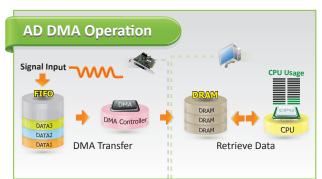
• Card ID

The PCI-2602U also includes an onboard Card ID that enables the board to be recognized via software if two or more PCI-2602U cards are installed in the same computer.

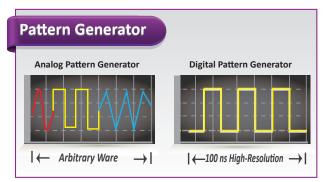
O Programmable Digital Input Filters (DI)

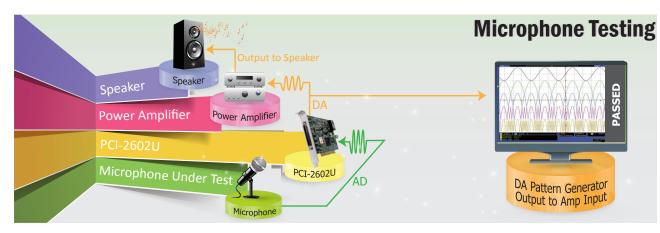
Programmable Digital Input filters can be employed to remove noise, glitches, and spikes on Digital Input ports, as well as to denounce the signal from the switch and relays in noisy industrial environments to prevent false readings caused by noise. The filter for the Digital Input channel can be configured by setting the filter time in seconds, preventing invalid readings and false triggers related to status change detection events.

Analog Pattern Generator (DA)

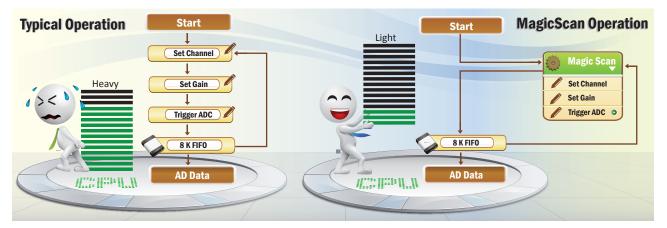

The PCI-2602 can be used to generate arbitrary wave shapes on a single Analog Output port based on user-defined waveform patterns. The Analog Pattern Generator operates at a full 20 MHz rate and is suitable for control systems or radar simulation, etc. The user-defined waveform pattern is stored in the onboard memory with a length of 512 samples of 16-bit data for simple- or complex-pattern applications.

Digital Pattern Generator (DO)


The PCI-2602U can be used to continuously output a digital pattern on the Digital Output port by utilizing a user-defined data pattern and rate that is based on 100-ns high-resolution timing (10 MHz).



- 16 Single-ended/8 Differential Analog Input Channels
 - □ 16-bit ADC with Max. 1 MS/s Sampling Rate
 - 8192-sample Hardware FIFO for Analog Input
- AD Trigger Mode: Software Trigger, Post-trigger, Middle-Trigger, Delay-Trigger
- AD Data Transfer: Polling, Interrupt, DMA
- □ AD Continuous Capture
- □ AD Auto-calibration Function



AD Continuous Capture

PCI-2602U provides the AD continuous capture function. The continuous capture refers to the acquisition of an unspecified number of samples. Instead of acquiring a set number of data samples and stopping, a continuous acquisition continues until you stop the operation.

O MagicScan (AD)

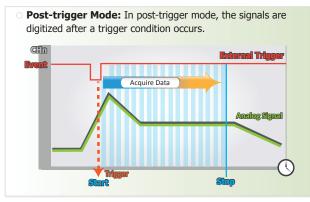
The AD channel scan function, called MagicScan, eliminates the majority of the effort required to acquire the AD value, such as selecting the channel, setting the gain values and the settling time, triggering the ADC, and acquiring the data. Using the built-in MagicScan and the interrupt features, these complex tasks are effectively offloaded from the CPU. Even in channel scan mode, a different gain code can be used for each channel, and the sampling rate can still achieve a total of 1 MS/s.

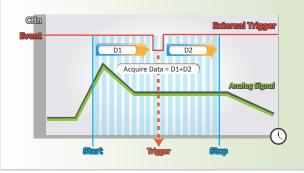
• Pulse Width Modulation (PWM, DO)

The PCI-2602U board is also capable of producing PWM signals that can be generated as a digital signal using the Digital Output line(s) from the PA. PWM signals are most commonly used to control a range of functions such as monitoring valves or pumps to adjusting the brightness of an LED.

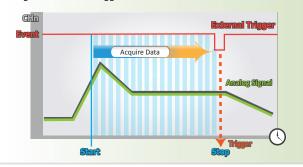
O SCSI II Connector

PCI-2602U provides a single SCSI II 68-pin high-density connector that reduces the required installation space and slot of the card in the computer and incorporates 32 programmable Digital I/O channels, 16 analog input channels and 2 analog output channels.

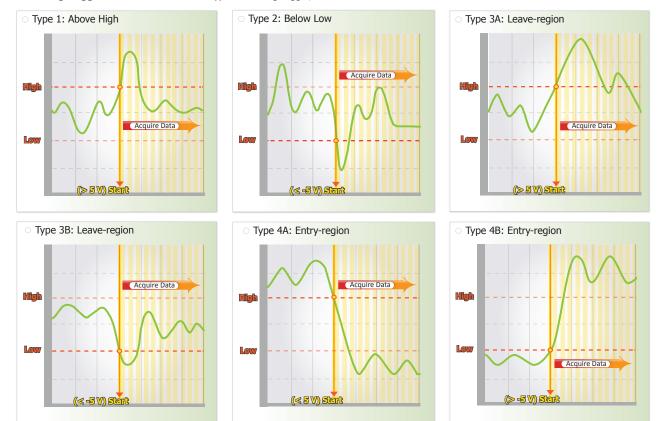



AD External Trigger Ø

Synchronization of the data acquisition process relative to an external event is an important criterion in many applications. For example, user may want to collect data after receiving a pulse signal from an encoder or when the temperature of a chamber exceeds a critical value. In such instances, the PCI-2602U must be set up to start the ADC as soon as the external event, or trigger, occurs. PCI-2602U supports both analog and digital triggers.


Digital Trigger: Post-trigger, Middle-trigger, Pre-trigger and Delay-trigger

Middle-trigger Mode: In middle-trigger mode, the signals are digitized both before and after a trigger condition occurs.


Pre-trigger Mode: In pre-trigger mode, the signals are digitized before a trigger condition occurs.

Delay-trigger Mode: In delay-trigger mode, signal capture begins once the programmed delay period from the trigger has elapsed.

Analog Trigger: There are six different types of analog trigger, as illustrated below:

Software

.

~	32/64-bit Windows XP/2003/2008/Vista/7/8				

Sample Programs

✓ LabVIEW Toolkit

✓ VB/VC/Delphi/BCB/VB.NET/C#.NET/VC.NET/MATLAB Demo

Hardware Specifications

Analog Input						
Channels	16 Single-ended/8 Differential					
AD Converter	16-bit, 1 µs conversion time					
Sampling Rate	1 MS/s (Max.)					
FIFO Size	8192 Samples					
Bipolar Range	±10.24 V, ±5.12 V, ±2.56 V					
Analog Output						
Channels	2					
Resolution	16-bit					
FIFO Size	512 Samples					
Output Rate	20 MS/s (Max.)					
Output Range	±10 V, ±5 V, ±EXT_REF, 0 ~ +10 V, 0 ~ +5 V, 0 ~ EXT_REF					
Programmable Digital	Programmable Digital I/O					
Channels	32 (4-port Programmable)					
Digital Input						
Compatibility	5 V/TTL					
FIFO Size	512 Samples					
Input Voltage	Low: 0.8 V Max.; High: 2.0 V Min.					
Digital Output						
Compatibility	5 V/CMOS					
DO FIFO Size	512 Samples					
Output Voltage	Logic 0: 0.4 V Max.; Logic 1: 2.4 V Min.					
Output Voltage	Sink: 6 mA @ 0.33 V Source: 6 mA @ 4.77 V					
General						
Bus Type	3.3 V/5 V Universal PCI, 32-bit, 33 MHz					
Card ID	Yes (4-bit)					
Connectors	Female SCSI II 68-pin x 1					
Power Consumption	1 A @ +5 V (Max.)					
Operating Temperature	0°C to +60°C					
Humidity	5 to 85% RH, Non-condensing					

Ordering Information

PCI-2602U CR	Universal PCI, 1 MS/s High-Speed, 16-channel Analog Input, 2-channel Analog Output and 32-channel DI/O (RoHS)

Accessories

DN-68A CR	DIN-Rail Mountable I/O Connector Block with 68-pin SCSI II Female Connector. (RoHs) 68-pin SCSI-II Connector Cable, 1.5 m					
CA-SCSI15-H						
DN-68A CA-SCS115-F						

Pin Assignments

D '								
Pin Assign-	Ter	minal	No.	Pin				
ment				Assign-				
ment		\mathbf{X}		ment				
+5 V (Output)	01		35	+12 V (Output)				
Ext_TRG	02		36	Cnt0_GATE				
Trg_GATE	03		37	Cnt0_OUT				
Pacer_OUT	04		38	Cnt0_CLK				
D_GND	05		39	D_GND				
PD7	06		40	PD6				
PD5	07		41	PD4				
PD3	08		42	PD2				
PD1	09		43	PD0				
PC7	10		44	PC6				
PC5	11		45	PC4				
PC3	12		46	PC2				
PC1	13		47	PC0				
D_GND	14		48	D_GND				
PB7	15		49	PB6				
PB5	16		50	PB4				
PB3	17		51	PB2				
PB1	18		52	PB0				
PA7	19		53	PA6				
PA5	20		54	PA4				
PA3	21		55	PA2				
PA1	22		56	PA0				
AO_GND	23		57	AO_GND				
AO1_OUT	24		58	AO0_OUT				
AO1_REF	25		59	AO0_REF				
AI_GND	26		60	AI_GND				
AI15	27		61	AI14				
AI13	28		62	AI12				
AI11	29		63	AI10				
AI9	30		64	AI8				
AI7	31		65	AI6				
AI5	32		66	AI4				
AI3	33		67	AI2				
AI1	34		68	AI0				
		し						
Female SCSI 68-pin (CON1)								